Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Chem ; 9(9): 862-867, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28837180

RESUMO

A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

2.
J Chem Phys ; 144(4): 044706, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26827227

RESUMO

The oxidation of CO on Pt(111) was investigated simultaneously by near ambient pressure X-ray photoelectron spectroscopy and online gas analysis. Different CO:O2 reaction mixtures at total pressures of up to 1 mbar were used in continuous flow mode to obtain an understanding of the surface chemistry. By temperature-programmed and by isothermal measurements, the onset temperature of the reaction was determined for the different reactant mixtures. Highest turnover frequencies were found for the stoichiometric mixture. At elevated temperatures, the reaction becomes diffusion-limited in both temperature-programmed and isothermal measurements. In the highly active regime, no adsorbates were detected on the surface; it is therefore concluded that the catalyst surface is in a metallic state, within the detection limits of the experiment, under the applied conditions. Minor bulk impurities such as silicon were observed to influence the reaction up to total inhibition by formation of non-platinum oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA