Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102205

RESUMO

Female bias is highly prevalent in conditions such as adrenal cortex hyperplasia and neoplasia, but the reasons behind this phenomenon are poorly understood. In this study, we show that overexpression of the secreted WNT agonist R-spondin 1 (RSPO1) leads to ectopic activation of WNT/ß-catenin signaling and causes sex-specific adrenocortical hyperplasia in mice. Although female adrenals show ectopic proliferation, male adrenals display excessive immune system activation and cortical thinning. Using a combination of genetic manipulations and hormonal treatment, we show that gonadal androgens suppress ectopic proliferation in the adrenal cortex and determine the selective regulation of the WNT-related genes Axin2 and Wnt4. Notably, genetic removal of androgen receptor (AR) from adrenocortical cells restores the mitogenic effect of WNT/ß-catenin signaling. This is the first demonstration that AR activity in the adrenal cortex determines susceptibility to canonical WNT signaling-induced hyperplasia.


Assuntos
Receptores Androgênicos , Via de Sinalização Wnt , Masculino , Camundongos , Feminino , Animais , Receptores Androgênicos/genética , beta Catenina/metabolismo , Hiperplasia , Proteínas Wnt/genética
2.
Elife ; 102021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399538

RESUMO

In response to physiological demand, the pituitary gland generates new hormone-secreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate that proliferation of neighbouring committed progenitor cells declines, demonstrating that progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as paracrine signalling centres to coordinate the proliferation of neighbouring cells.


Assuntos
Comunicação Parácrina , Hipófise/fisiologia , Células-Tronco/fisiologia , Via de Sinalização Wnt , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Masculino , Camundongos
3.
Cell Stem Cell ; 25(2): 290-296.e2, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31104943

RESUMO

Evolution has resulted in profound differences between males and females that extend to non-reproductive organs and are reflected in the susceptibility and progression of diseases. However, the cellular and molecular basis for these differences remains largely unknown. Here we report that adrenal gland tissue renewal is highly active and sexually dimorphic, with female mice showing a 3-fold higher turnover than males. Moreover, in males, homeostasis relies on proliferation of cells within the steroidogenic zone, but females employ an additional stem and/or progenitor compartment situated in the adrenal capsule. Using lineage tracing, sex reversal models, gonadectomy, and dihydrotestosterone treatments, we further show that sex-specific stem cell activity is driven by male hormones that repress recruitment of Gli1+ stem cells from the capsule and cell proliferation. Taken together, our findings provide a molecular and cellular basis for adrenal sex dimorphism that may contribute to the increased incidence of adrenal diseases in females.


Assuntos
Doenças das Glândulas Suprarrenais/metabolismo , Fatores Sexuais , Células-Tronco/fisiologia , Córtex Suprarrenal/fisiologia , Doenças das Glândulas Suprarrenais/epidemiologia , Doenças das Glândulas Suprarrenais/patologia , Evolução Biológica , Castração , Proliferação de Células , Autorrenovação Celular , Células Cultivadas , Suscetibilidade a Doenças , Feminino , Homeostase , Humanos , Incidência , Masculino , Regeneração , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...