Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(14): 7444-7455, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38552143

RESUMO

Studying polymer micelle structure and loading dynamics under environmental conditions is critical for nanocarrier applications but challenging due to a lack of in situ nanoprobes. Here, the structure and loading of amphiphilic polyelectrolyte copolymer micelles, formed by 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and n-dodecyl acrylamide (DDAM), were investigated using a multimodal approach centered around in situ resonant soft X-ray scattering (RSoXS). We observe aqueous micelles formed from polymers of wide-ranging molecular weights and aqueous concentrations. Despite no measurable critical micelle concentration (CMC), structural analyses point toward multimeric structures for most molecular weights, with the lowest molecular weight micelles containing mixed coronas and forming loose micelle clusters that enhance hydrocarbon uptake. The sizes of the micelle substructures are independent of both the concentration and molecular weight. Combining these results with a measured molecular weight-invariant surface charge and zeta potential strengthens the link between the nanoparticle size and ionic charge in solution that governs the polysoap micelle structure. Such control would be critical for nanocarrier applications, such as drug delivery and water remediation.

2.
Small ; 18(23): e2202411, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35559598

RESUMO

Although solvent additives are used to optimize device performance in many novel non-fullerene acceptor (NFA) organic solar cells (OSCs), the effect of processing additives on OSC structures and functionalities can be difficult to predict. Here, two polymer-NFA OSCs with highly sensitive device performance and morphology to the most prevalent solvent additive chloronaphthalene (CN) are presented. Devices with 1% CN additive are found to nearly double device efficiencies to 10%. However, additive concentrations even slightly above optimum significantly hinder device performance due to formation of undesirable morphologies. A comprehensive analysis of device nanostructure shows that CN is critical to increasing crystallinity and optimizing phase separation up to the optimal concentration for suppressing charge recombination and maximizing performance. Here, domain purity and crystallinity are highly correlated with photocurrent and fill factors. However, this effect is in competition with uncontrolled crystallization of NFAs that occur at CN concentrations slightly above optimal. This study highlights how slight variations of solvent additives can impart detrimental effects to morphology and device performance of NFA OSCs. Therefore, successful scale-up processing of NFA-based OSCs will require extreme formulation control, a tuned NFA structure that resists runaway crystallization, or alternative methods such as additive-free fabrication.

3.
J Synchrotron Radiat ; 27(Pt 6): 1601-1608, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147184

RESUMO

Resonant soft X-ray scattering (RSOXS) has become a premier probe to study complex three-dimensional nanostructures in soft matter through combining the robust structural characterization of small-angle scattering with the chemical sensitivity of spectroscopy. This technique borrows many of its analysis methods from alternative small-angle scattering measurements that utilize contrast variation, but thus far RSOXS has been unable to reliably achieve an absolute scattering intensity required for quantitative analysis of domain compositions, volume fraction, or interfacial structure. Here, a novel technique to calibrate RSOXS to an absolute intensity at the carbon absorption edge is introduced. It is shown that the X-ray fluorescence from a thin polymer film can be utilized as an angle-independent scattering standard. Verification of absolute intensity is then accomplished through measuring the Flory-Huggins interaction parameter in a phase-mixed polymer melt. The necessary steps for users to reproduce this intensity calibration in their own experiments to improve the scientific output from RSOXS measurements are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...