Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 251, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833318

RESUMO

Flat metaoptics components are looking to replace classical optics elements and could lead to extremely compact biophotonics devices if integrated with on-chip light sources and detectors. However, using metasurfaces to shape light into wide angular range wavefronts with high efficiency, as is typically required in high-contrast microscopy applications, remains a challenge. Here we demonstrate curved GaAs metagratings integrated on vertical-cavity surface-emitting lasers (VCSELs) that enable on-chip illumination in total internal reflection and dark field microscopy. Based on an unconventional design that circumvents the aspect ratio dependent etching problems in monolithic integration, we demonstrate off-axis emission centred at 60° in air and 63° in glass with > 90% and > 70% relative deflection efficiency, respectively. The resulting laser beam is collimated out-of-plane but maintains Gaussian divergence in-plane, resulting in a long and narrow illumination area. We show that metagrating-integrated VCSELs of different kinds can be combined to enable rapid switching between dark-field and total internal reflection illumination. Our approach provides a versatile illumination solution for high-contrast imaging that is compatible with conventional microscopy setups and can be integrated with biophotonics devices, such as portable microscopy, NIR-II range bioimaging, and lab-on-a-chip devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...