Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892078

RESUMO

The aim of this work was to develop and characterize a thin films composed of hyaluronic acid/ellagic acid for potential medical application. Its principal novelty, distinct from the prior literature in terms of hyaluronic acid films supplemented with phenolic acids, resides in the predominant incorporation of ellagic acid-a distinguished compound-as the primary constituent of the films. Herein, ellagic acid was dissolved in two different solvents, i.e., acetic acid (AcOH) or sodium hydroxide (NaOH), and the surface properties of the resultant films were assessed using atomic force microscopy and contact angle measurements. Additionally, various physicochemical parameters were evaluated including moisture content, antioxidant activity, and release of ellagic acid in phosphate buffered saline. Furthermore, the evaluation of films' biocompatibility was conducted using human epidermal keratinocytes, dermal fibroblasts, and human amelanotic melanoma cells (A375 and G361), and the antimicrobial activity was elucidated accordingly against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442. Our results showed that the films exhibited prominent antibacterial properties particularly against Staphylococcus aureus, with the 80HA/20EA/AcOH film indicating the strong biocidal activity against this strain leading to a significant reduction in viable cells. Comparatively, the 50HA/50EA/AcOH film also displayed biocidal activity against Staphylococcus aureus. This experimental approach could be a promising technique for future applications in regenerative dermatology or novel strategies in terms of bioengineering.


Assuntos
Materiais Biocompatíveis , Ácido Elágico , Ácido Hialurônico , Staphylococcus aureus , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ácido Elágico/farmacologia , Ácido Elágico/química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Propriedades de Superfície
2.
J Mech Behav Biomed Mater ; 148: 106205, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948920

RESUMO

Gelatin-based films modified with sorbitol were produced from gelatin solution or gelatin/starch blends using a simple and low-cost solvent casting method, and subsequently, their physicochemical, mechanical, and biocompatibility properties were characterized. This work focused on developing and optimizing a biopolymeric blend to improve the pure biopolymers' properties for potential biomedical applications such as wound dressing. The films were characterized in terms of morphology and transparency, mechanical, moisture and swelling properties, thermal stability, and degradation potential. Moreover, hemocompatibility, as well as cytocompatibility of prepared films, were examined. The addition of sorbitol contributed to improving mechanical properties, swelling reduction, and increasing biostability over time. The cytocompatibility of obtained films was confirmed in vitro with two different human cell lines, fibroblastic and osteoblastic, and a more favorable cellular response was received for fibroblasts. Further, in hemocompatibility studies, it was found that all films may be classified as non-hemolytic as they did not have a negative effect on the human erythrocytes. The obtained results indicate the great potential of the gelatin/starch blends modified with sorbitol as regenerative biomaterials intended for wound healing applications.


Assuntos
Gelatina , Amido , Humanos , Amido/química , Gelatina/química , Sorbitol/farmacologia , Materiais Biocompatíveis/farmacologia , Cicatrização
3.
Foods ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981267

RESUMO

This article provides a summarization of present knowledge on the fabrication and characterization of polymeric food packaging materials that can be an alternative to synthetic ones. The review aimed to explore different studies related to the use of phenolic acids as cross-linkers, as well as bioactive additives, to the polymer-based materials upon their application as packaging. This article further discusses additives such as benzoic acid derivatives (sinapic acid, gallic acid, and ellagic acid) and cinnamic acid derivatives (p-coumaric acid, caffeic acid, and ferulic acid). These phenolic acids are mainly used as antibacterial, antifungal, and antioxidant agents. However, their presence also improves the physicochemical properties of materials based on polymers. Future perspectives in polymer food packaging are discussed.

4.
Foods ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627058

RESUMO

Polymeric films based on polylactide (PLA) with the addition of poly(ethylene glycol) (PEG) and a chloroformic extract of propolis were obtained. In the case of the studied films, polylactide (PLA) played the role of polymeric matrix and poly(ethylene glycol) was used as a plasticizer, while the extract of propolis was incorporated as a compound that could significantly affect the properties of the obtained materials, especially the water vapour permeation rate and the stability of the food products. Moreover, changes in structure, morphology, mechanical and storage properties as well as differences in colour, thickness and transparency after introducing propolis into the PLA-PEG system were determined. Based on the obtained results, it was established that the addition of the chloroformic extract of propolis significantly influences the most important properties taken into account during food packaging. It was also noticed that films with incorporated propolis were characterised by a significant improvement in the water vapour barrier property. Moreover, the obtained results prove that packaging containing a chloroformic propolis extract allow for the maintenance of the quality of the fruit stored for an extended period of time. To summarise, the application of a chloroformic propolis extract enables the formation of packaging materials that extend the shelf life of stored food products.

5.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566989

RESUMO

In this work, dialdehyde chitosan (DAC) and collagen (Coll) scaffolds have been prepared and their physico-chemical properties have been evaluated. Their structural properties were studied by Fourier Transform Infrared Spectroscopy with Attenuated Internal Reflection (FTIR-ATR) accompanied by evaluation of thermal stability, porosity, density, moisture content and microstructure by Scanning Electron Microscopy-SEM. Additionally, cutaneous assessment using human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and melanoma cells (A375 and G-361) was performed. Based on thermal studies, two regions in DTG curves could be distinguished in each type of scaffold, what can be assigned to the elimination of water and the polymeric structure degradation of the materials components. The type of scaffold had no major effect on the porosity of the materials, but the water content of the materials decreased with increasing dialdehyde chitosan content in subjected matrices. Briefly, a drop in proliferation was noticed for scaffolds containing 20DAC/80Coll compared to matrices with collagen alone. Furthermore, increased content of DAC (50DAC/50Coll) either significantly induced the proliferation rate or maintains its ratio compared to the control matrix. This delivery is a promising technique for additional explorations targeting therapies in regenerative dermatology. The using of dialdehyde chitosan as one of the main scaffolds components is the novelty in terms of bioengineering.

6.
Polymers (Basel) ; 14(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406217

RESUMO

This review provides a report on recent advances in the field of chitosan (CTS) and silk fibroin (SF) biopolymer blends as new biomaterials. Chitosan and silk fibroin are widely used to obtain biomaterials. However, the materials based on the blends of these two biopolymers have not been summarized in a review paper yet. As these materials can attract both academic and industrial attention, we propose this review paper to showcase the latest achievements in this area. In this review, the latest literature regarding the preparation and properties of chitosan and silk fibroin and their blends has been reviewed.

7.
Materials (Basel) ; 14(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34947221

RESUMO

The aim of this work was to obtain and characterize polylactide films (PLA) with the addition of poly(ethylene glycol) (PEG) as a plasticizer and chloroformic olive leaf extract (OLE). The composition of OLE was characterized by LC-MS/MS techniques. The films with the potential for using in the food packaging industry were prepared using a solvent evaporation method. The total content of the phenolic compounds and DPPH radical scavenging assay of all the obtained materials have been tested. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (FTIR-ATR) allows for determining the molecular structure, while Scanning Electron Microscopy (SEM) indicated differences in the films' surface morphology. Among other crucial properties, mechanical properties, thickness, degree of crystallinity, water vapor permeation rate (WVPR), and color change have also been evaluated. The results showed that OLE contains numerous active substances, including phenolic compounds, and PLA/PEG/OLE films are characterized by improved antioxidant properties. The OLE addition into PLA/PEG increases the material crystallinity, while the WVPR values remain almost unaffected. From these studies, significant insight was gained into the possibility of the application of chloroform as a solvent for both olive leaf extraction and for the preparation of OLE, PLA, and PEG-containing film-forming solutions. Finally, evaporation of the solvent from OLE can be omitted.

8.
Materials (Basel) ; 14(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34501083

RESUMO

In this work, two-component dialdehyde chitosan/hyaluronic acid scaffolds were developed and characterized. Dialdehyde chitosan was obtained by one-step synthesis with chitosan and sodium periodate. Three-dimensional scaffolds were prepared by the lyophilization method. Fourier transform infrared spectroscopy (FTIR) was used to observe the chemical structure of scaffolds and scanning electron microscopy (SEM) imaging was done to assess the microstructure of resultant materials. Thermal analysis, mechanical properties measurements, density, porosity and water content measurements were used to characterize physicochemical properties of dialdehyde chitosan/hyaluronic acid 3D materials. Additionally, human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and human melanoma cells (A375 and G-361) were used to evaluate cell viability in the presence of subjected scaffolds. It was found that scaffolds were characterized by a porous structure with interconnected pores. The scaffold composition has an influence on physicochemical properties, such as mechanical strength, thermal resistance, porosity and water content. There were no significant differences between cell viability proliferation of all scaffolds, and this observation was visible for all subjected cell lines.

9.
Materials (Basel) ; 14(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801625

RESUMO

A series of new films with antibacterial properties has been obtained by means of solvent casting method. Biodegradable materials including polylactide (PLA), quercetin (Q) acting as an antibacterial compound and polyethylene glycol (PEG) acting as a plasticizer have been used in the process. The effect of quercetin as well as the amount of PEG on the structural, thermal, mechanical and antibacterial properties of the obtained materials has been determined. It was found that an addition of quercetin significantly influences thermal stability. It should be stressed that samples containing the studied flavonoid are characterized by a higher Young modulus and elongation at break than materials consisting only of PLA and PEG. Moreover, the introduction of 1% of quercetin grants antibacterial properties to the new materials. Recorded results showed that the amount of plasticizer did not influence the antibacterial properties; it does, however, cause changes in physicochemical properties of the obtained materials. These results prove that quercetin could be used as an antibacterial compound and simultaneously improve mechanical and thermal properties of polylactide-based films.

10.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805101

RESUMO

Hydrogels based on chitosan are very versatile materials which can be used for tissue engineering as well as in controlled drug delivery systems. One of the methods for obtaining a chitosan-based hydrogel is crosslinking by applying different components. The objective of the present study was to obtain a series of new crosslinked chitosan-based films by means of solvent casting method. Squaric acid-3,4-dihydroxy-3-cyclobutene-1,2-dione-was used as a safe crosslinking agent. The effect of the squaric acid on the structural, mechanical, thermal, and swelling properties of the formed films was determined. It was established that the addition of the squaric acid significantly improved Young's modulus, tensile strength, and thermal stability of the obtained materials. Moreover, it should be stressed that the samples consisting of chitosan and squaric acid were characterized by a higher swelling than pure chitosan. The detailed characterization proved that squaric acid could be used as a new effective crosslinking agent.


Assuntos
Quitosana/química , Reagentes de Ligações Cruzadas/química , Ciclobutanos/química , Materiais Biocompatíveis/química , Módulo de Elasticidade , Hidrogéis/química , Teste de Materiais , Microscopia de Força Atômica , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração , Termodinâmica , Termogravimetria , Engenharia Tecidual/métodos
11.
Materials (Basel) ; 14(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808809

RESUMO

This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.

12.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806219

RESUMO

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


Assuntos
Biopolímeros/química , Quitosana/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Colágeno/química , Reagentes de Ligações Cruzadas/química , Fibroínas/química , Humanos , Microscopia Eletrônica de Varredura , Osteoblastos/efeitos dos fármacos , Porosidade , Ratos , Medicina Regenerativa , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos
13.
Materials (Basel) ; 14(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652959

RESUMO

Blending of different biopolymers, e.g., collagen, chitosan, silk fibroin and cross-linking modifications of these mixtures can lead to new materials with improved physico-chemical properties, compared to single-component scaffolds. Three-dimensional scaffolds based on three-component mixtures of silk fibroin, collagen and chitosan, chemically cross-linked, were prepared and their physico-chemical and biological properties were evaluated. A mixture of EDC (N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) was used as a cross-linking agent. FTIR was used to observe the position of the peaks characteristic for collagen, chitosan and silk fibroin. The following properties depending on the scaffold structure were studied: swelling behavior, liquid uptake, moisture content, porosity, density, and mechanical parameters. Scanning Electron Microscopy imaging was performed. Additionally, the biological properties of these materials were assessed, by metabolic activity assay. The results showed that the three-component mixtures, cross-linked by EDC/NHS and prepared by lyophilization method, presented porous structures. They were characterized by a high swelling degree. The composition of scaffolds has an influence on mechanical properties. All of the studied materials were cytocompatible with MG-63 osteoblast-like cells.

14.
Materials (Basel) ; 13(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759746

RESUMO

In this study, three-dimensional materials based on blends of silk fibroin (SF), collagen (Coll), and chitosan (CTS) cross-linked by glyoxal solution were prepared and the properties of the new materials were studied. The structure of the composites and the interactions between scaffold components were studied using FTIR spectroscopy. The microstructure was observed using a scanning electron microscope. The following properties of the materials were measured: density and porosity, moisture content, and swelling degree. Mechanical properties of the 3D materials under compression were studied. Additionally, the metabolic activity of MG-63 osteoblast-like cells on materials was examined. It was found that the materials were characterized by a high swelling degree (up to 3000% after 1 h of immersion) and good porosity (in the range of 80-90%), which can be suitable for tissue engineering applications. None of the materials showed cytotoxicity toward MG-63 cells.

15.
Polymers (Basel) ; 12(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046018

RESUMO

In this study, three-dimensional (3D) biopolymeric scaffolds made from collagen, silk fibroin and chitosan were successfully prepared by the freeze drying method. Dialdehyde starch (DAS) was used as a cross-linking agent for the materials. The properties of the materials were studied using density and porosity measurements, scanning electron microscope (SEM) imaging, swelling and moisture content measurements. Additionally, cytocompatibility of the materials in contact with MG-63 osteoblast-like cells was tested by live/dead staining and resazurin reduction assay on days 1, 3 and 7. It was found that new 3D materials made from collagen/silk fibroin/chitosan binary or ternary mixtures are hydrophilic with a high swelling ability (swelling rate in the range of 1680-1900%). Cross-linking of such biopolymeric materials with DAS increased swelling rate up to about 2100%, reduced porosity from 96-97% to 91-93%, and also decreased density and moisture content of the materials. Interestingly, presence of DAS did not influence the microstructure of the scaffolds as compared to non-cross-linked samples as shown by SEM. All the tested samples were found to be cytocompatible and supported adhesion and growth of MG-63 cells as shown by live-dead staining and metabolic activity test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...