Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-434287

RESUMO

The SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250928

RESUMO

Since the first report of SARS-CoV-2 in December 2019, genetic variants have continued to emerge, complicating strategies for mitigating the disease burden of COVID-19. Positive SARS-CoV-2 nasopharyngeal swabs (n=8,735) were collected from Missouri, USA, from March-October 2020, and viral genomes (n=178) were sequenced. Hospitalization status and length of stay were extracted from medical charts of 1,335 patients and integrated with emerging genetic variants and viral shedding analyses for assessment of clinical impacts. Multiple introductions of SARS-CoV-2 into Missouri, primarily from Australia, Europe, and domestic states, were observed. Four local lineages rapidly emerged and spread across urban and rural regions in Missouri. While the majority of Missouri viruses harbored Spike-D614G mutations, a large number of unreported mutations were identified among Missouri viruses, including seven in the RNA-dependent RNA polymerase complex and Spike protein that were positively selected. A 15.6-fold increase in viral RNA levels in swab samples occurred from March to May and remained elevated. Accounting for other comorbidities, individuals test-positive for COVID-19 with high viral loads were less likely to be hospitalized (odds ratio=0.39, 95% confidence interval [CI]=0.20, 0.77) and had shorter hospital stays (hazard ratio=0.34, p=0.003) than those with low viral loads. Overall, the first eight months of the pandemic in Missouri saw multiple locally acquired mutants emerge and dominate in urban and rural locations. Although we were unable to find associations between specific variants and greater disease severity, Missouri COVID-positive individuals that presented with increased viral shedding had less severe disease by several measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...