Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 7(3): e06483, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33763616

RESUMO

Anther indehiscence in certain wide crosses combines male sterility with stigma exertion, a phenomenon that is desirable for hybrid rice seed production. This study sought to identify chromosomal region(s) that combine anther indehiscence with exerted stigmas. A mapping population consisting of 189 BC1F1 plants was derived from a cross between CRI-48 and Jasmine 85 and backcrossing the resulting F1 to Jasmine 85. Contrary to the three complementary genes mode of inheritance reported earlier, a single locus (AI6-1) was mapped on chromosome 6 at 27.4 cM for anther indehiscence with exerted stigmas through a mixed model-based composite interval mapping (MCIM). This locus was flanked by two single nucleotide polymorphism (SNP) markers, K_ID6002884 and K_ID6003341 within a range of 23.1-28.9 cM. The allele at the locus was contributed by the CRI-48 parent which has Oryza glaberrima ancestry. This locus is suggested to control anther indehiscence and stigma exertion through pleiotropic gene action or cluster of genes.

2.
J Exp Bot ; 71(14): 4188-4200, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277700

RESUMO

Adoption of rice varieties that perform well under high iron-associated (HIA) stress environments can enhance rice production in West Africa. This study reports the genetic characterization of 323 rice accessions and breeding lines cultivated in West Africa using genotyping-by-sequencing and their phenotypic response to HIA treatments in hydroponic solution (1500 mg l-1 FeSO4·7H2O) and hot-spot fields. The germplasm consisted of four genetic subpopulations: Oryza glaberrima (14%), O. sativa-japonica (7%), O. sativa-indica Group 1 (45%), and O. sativa-indica Group 2 (25%). Severe versus mild stress in the field was associated with a reduced SPAD value (12%), biomass (56%), and grain yield (57%), with leaf bronzing explaining 30% and 21% of the variation for biomass and grain yield, respectively. Association mapping using 175 indica genotypes identified 23 significant single nucleotide polymorphism (SNP) markers that mapped to 14 genomic regions. Genome-wide association study (GWAS) signals associated with leaf bronzing, a routinely used indicator of HIA stress, differed in hydroponic compared with field conditions. Contrastingly, six significant SNPs on chromosomes 8 and 9 were associated with the SPAD value under HIA stress in both field and hydroponic experiments, and a candidate potassium transporter gene mapped under the peak on chromosome 8. This study helps define criteria for assessing rice performance under HIA environments.


Assuntos
Oryza , África Ocidental , Estudo de Associação Genômica Ampla , Ferro , Oryza/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
3.
Heliyon ; 6(1): e03154, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32042951

RESUMO

Genetic diversity is fundamentally important in crop improvement and provides plants with the capacity to meet the demands of changing environments. This work was carried out to assess the diversity and the extent of genetic relatedness among a number of assembled cassava (Manihot esculenta Crantz) accessions. We conducted a microsatellite marker analysis of 89 cassava accessions collected from Ghanaian and exotic sources. These accessions were assayed using 35 simple sequence repeat (SSR) markers. A total of 167 alleles were detected from 35 polymorphic markers with an average of 4.77 alleles per locus. High allelic frequency was detected across the accessions, ranging from 0.32 to 0.99 with an average of 0.62 per marker. Observed heterozygosity ranged from 0.03 - 0.97 across the accessions. Polymorphism information content (PIC) ranged from 0.03 to 0.78 with a mean of 0.45, indicating high level of polymorphism across the accessions. Comparatively, higher number of alleles, gene diversity and observed heterozygosity were detected among the local accessions compared with the exotic accessions indicating rich genetic diversity among them. Population structure analysis based on STRUCTURE identified two subpopulations and a large number of admixtures. Cluster analysis based on the neighbour joining algorithim further separated the collection into seven sub-groupings irrespective of geographical origin. This indicates the possible sharing of common genomic regions occurring across the accessions. High allelic frequency differences and levels of heterozygosity were observed among the germplasm. These findings indicated significant genetic variability in the germplasm to warrant selection.

4.
Sci Rep ; 8(1): 1549, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367617

RESUMO

Cassava (Manihot esculenta Crantz) is an important security crop that faces severe yield loses due to cassava brown streak disease (CBSD). Motivated by the slow progress of conventional breeding, genetic improvement of cassava is undergoing rapid change due to the implementation of quantitative trait loci mapping, Genome-wide association mapping (GWAS), and genomic selection (GS). In this study, two breeding panels were genotyped for SNP markers using genotyping by sequencing and phenotyped for foliar and CBSD root symptoms at five locations in Uganda. Our GWAS study found two regions associated to CBSD, one on chromosome 4 which co-localizes with a Manihot glaziovii introgression segment and one on chromosome 11, which contains a cluster of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. We evaluated the potential of GS to improve CBSD resistance by assessing the accuracy of seven prediction models. Predictive accuracy values varied between CBSD foliar severity traits at 3 months after planting (MAP) (0.27-0.32), 6 MAP (0.40-0.42) and root severity (0.31-0.42). For all traits, Random Forest and reproducing kernel Hilbert spaces regression showed the highest predictive accuracies. Our results provide an insight into the genetics of CBSD resistance to guide CBSD marker-assisted breeding and highlight the potential of GS to improve cassava breeding.


Assuntos
Resistência à Doença , Genes de Plantas , Manihot/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Uganda
5.
Pak J Biol Sci ; 20(3): 132-139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023004

RESUMO

BACKGROUND: In drought-prone environments, direct selection for yield is not adequate because of the variable environment and genotype x environment interaction. Therefore, the use of secondary traits in addition to yield has been suggested. The relative usefulness of secondary traits as indirect selection criteria for maize grain yield is determined by the magnitudes of their genetic variance, heritability and genetic correlation with the grain yield. MATERIALS AND METHODS: Forty eight testcross hybrids derived from lines with different genetic background and geographical origins plus 7 checks were evaluated in both well-watered and water-stressed conditions over two years for grain yield and secondary traits to determine the most appropriate secondary traits and select drought tolerant hybrids. RESULTS: Study found that broad-sense heritability of grain yield and Ear Per Plant (EPP) increased under drought stress. Ear aspect (EASP) and ear height (EHT) had larger correlation coefficients and direct effect on grain yield but in opposite direction, negative and positive respectively. Traits like, EPP, Tassel Size (TS) and Plant Recovery (PR) contributed to increase yield via EASP by a large negative indirect effect. Under drought stress, EHT had positive and high direct effect and negative indirect effect via plant height on grain yield indicating that the ratio between ear and plant heights (R-EPH) was associated to grain yield. CONCLUSION: Path coefficient analysis showed that traits EPP, TS, PR, EASP, R-EPH were important secondary traits in the present experiment. These traits were used in a selection index to classify hybrids according to their performance under drought. The selection procedure included also a Relative Decrease in Yield (RDY) index. Some secondary traits reported as significant selection criteria for selection under drought stress were not finally established in the present study. This is because the relationship between grain and secondary traits can be affected by various factors including germplasm, environment and applied statistical analysis. Therefore, different traits and selection procedure should be applied in the selection process of drought tolerant genotypes for diverse genetic materials and growing conditions.


Assuntos
Produtos Agrícolas/genética , Secas , Variação Genética , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Produtos Agrícolas/crescimento & desenvolvimento , Cruzamentos Genéticos , Regulação Viral da Expressão Gênica , Genótipo , Hereditariedade , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Fatores de Tempo , Zea mays/crescimento & desenvolvimento
6.
Theor Appl Genet ; 128(9): 1647-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093610

RESUMO

Consolidates relevant molecular and phenotypic information on cassava to demonstrate relevance of heterosis, and alternatives to exploit it by integrating different tools. Ideas are useful to other asexually reproduced crops. Asexually propagated crops offer the advantage that all genetic effects can be exploited in farmers' production fields. However, non-additive effects complicate selection because, while influencing the performance of the materials under evaluation, they cannot be transmitted efficiently to the following cycle of selection. Cassava can be used as a model crop for asexually propagated crops because of its diploid nature and the absence of (known) incompatibility effects. New technologies such as genomic selection (GS), use of inbred progenitors based on doubled haploids and induction of flowering can be employed for accelerating genetic gains in cassava. Available information suggests that heterosis, non-additive genetic effects and within-family variation are relatively large for complex traits such as fresh root yield, moderate for dry matter or starch content in the roots, and low for defensive traits (pest and disease resistance) and plant architecture. The present article considers the potential impact of different technologies for maximizing gains for key traits in cassava, and highlights the advantages of integrating them. Exploiting heterosis would be optimized through the implementation of reciprocal recurrent selection. The advantages of using inbred progenitors would allow shifting the current cassava phenotypic recurrent selection method into line improvement, which in turn would allow designing outstanding hybrids rather than finding them by trial and error.


Assuntos
Produtos Agrícolas/genética , Endogamia , Manihot/genética , Melhoramento Vegetal/métodos , Vigor Híbrido , Fenótipo , Característica Quantitativa Herdável
7.
BMC Genet ; 15: 127, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25421948

RESUMO

BACKGROUND: Genetic diversity provides the capacity for plants to meet changing environments. It is fundamentally important in crop improvement. Fifty-nine local maize lines developed at INERA and 41 exotic (temperate and tropical) inbred lines were characterized using 1057 SNP markers to (1) analyse the genetic diversity in a diverse set of maize inbred lines; (2) determine the level of genetic diversity in INERA inbred lines and patterns of relationships of these inbred lines developed from two sources; and (3) examine the genetic differences between local and exotic germplasms. RESULTS: Roger's genetic distance for about 64% of the pairs of lines fell between 0.300 and 0.400. Sixty one per cent of the pairs of lines also showed relative kinship values of zero. Model-based population structure analysis and principal component analysis revealed the presence of 5 groups that agree, to some extent, with the origin of the germplasm. There was genetic diversity among INERA inbred lines, which were genetically less closely related and showed a low level of heterozygosity. These lines could be divided into 3 major distinct groups and a mixed group consistent with the source population of the lines. Pairwise comparisons between local and exotic germplasms showed that the temperate and some IITA lines were differentiated from INERA lines. There appeared to be substantial levels of genetic variation between local and exotic germplasms as revealed by missing and unique alleles. CONCLUSIONS: Allelic frequency differences observed between the germplasms, together with unique alleles identified within each germplasm, shows the potential for a mutual improvement between the sets of germplasm. The results from this study will be useful to breeders in designing inbred-hybrid breeding programs, association mapping population studies and marker assisted breeding.


Assuntos
Polimorfismo de Nucleotídeo Único , Zea mays/genética , Cromossomos de Plantas/genética , Análise por Conglomerados , Frequência do Gene , Genes de Plantas , Marcadores Genéticos , Hibridização Genética , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...