Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364657

RESUMO

In the present work, reduced graphene oxide was obtained by green synthesis, using extracts of Larrea tridentata (gobernadora) and Capsicum Chinense (habanero). Graphene oxide was synthesized by the modified Hummers' method and subsequently reduced using natural extracts to obtain a stable and environmentally friendly graphene precursor. Consequently, the gobernadora aqueous extract was found to have a better reducing power than the habanero aqueous extract. This opportunity for green synthesis allows the application of RGO in photocatalysis for the degradation of the methylene blue dye. Degradation efficiencies of 60% and 90% were obtained with these materials.

2.
Sci Rep ; 11(1): 2265, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500468

RESUMO

In this study, (1 - x) BFO-xCFO (CFO, x = 0.00, 0.05, 0.10 and 0.30) ceramics were synthesized by a solid-state reaction method; their compositions were driven by structural, microstructural, vibrational, electrical, magnetic properties; their enhanced magneto capacitance (MC) effect have also been carried out. Reitveld refinement studies of X-ray diffraction data shows composition-driven structural phase transformation from rhombohedral (R3c) to tetragonal (P4mm). Two phonon scattering Raman modes were observed for the higher wavenumber which supports the crystal structural transition in the BFO-CFO. Ferroelectric polarization shows that the polarization increased with increasing CFO concentration, which describes the changes of the polar symmetry of the crystal structure from rhombohedral (R3c) to tetragonal (P4mm). In Further, the maximum efficiency of energy density (η = 68.65%), reversible energy density of 0.138 J/cm3 and the strong magneto capacitance was observed in 0.9BFO-0.1CFO, which belongs to the morphotropic phase boundary (MPB) region near to the BiFeO3-rich region. The magnetic response analysis has shown, the saturation magnetization (Ms) values of 83 emu/gm and 139 emu/gm for pure CFO and 0.7BFO-0.3CFO composite, respectively, and their magnetic behaviours were also confirmed with Arrott-Belov-Kouvel (ABK) plot.

3.
Water Res ; 123: 353-360, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28686937

RESUMO

Effective removal of excess phosphate from water is critical to counteract eutrophication and restore water quality. In this study, low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) were synthesized and applied for the remediation of phosphate from aqueous media. The HA-MNPs, characterized by FTIR, TEM and HAADF-STEM showed the extensive coating of humic acid on the magnetite surface. The magnetic nanoparticles with diameters of 7-12 nm could be easily separated from the reaction mixture by using a simple hand held magnet. Adsorption studies demonstrate the fast and effective separation of phosphate with maximum adsorption capacity of 28.9 mg/g at pH 6.6. The adsorption behavior follows the Freundlich isotherm suggesting the formation of non-uniform multilayers of phosphate on the heterogeneous surface of HA-MNP. The adsorption kinetic fits the pseudo-second order model well with rate constants of 0.206 ± 0.003, 0.073 ± 0.002 and 0.061 ± 0.003 g mg-1min-1 for phosphate (P) concentrations of 2, 5 and 10 mg/L respectively. The removal of phosphate was found higher at acidic and neutral pH compared to basic conditions. The nanoparticles exhibit good selectivity and adsorption efficiency for phosphate in presence of co-existing ions such as Cl-, SO42-and NO3- with some inhibition effect by CO32-. The effect of temperature on the adsorption reveals that the process is endothermic and spontaneous. HA-MNPs are promising, simple, environmentally friendly materials for the removal of phosphate from aqueous media.


Assuntos
Substâncias Húmicas , Nanopartículas de Magnetita , Fosfatos/química , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...