Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 39(2): 335-343, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32911572

RESUMO

Lixisenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is used in the treatment of type 2 diabetes mellitus (T2DM). It increases insulin (INS) secretion and can decrease INS resistance, improving metabolic disorders in this disease. However, its effects on metabolic disturbances in cancer-bearing, which also exhibit decreased INS secretion and INS resistance, changes that may contribute to weight loss (cachexia), have not yet been evaluated. The purpose of this study was to investigate the lixisenatide treatment effects on mild cachexia and related metabolic abnormalities in Walker-256 tumour-bearing rats. Lixisenatide (50 µg kg-1 , SC) was administered once daily, for 6 days, after inoculation of Walker-256 tumour cells. Acute lixisenatide treatment did not improve hypoinsulinemia, INS secretion and INS resistance of tumour-bearing rats. It also did not prevent the reduced glucose and increased triacylglycerol and lactate in the blood and nor the loss of retroperitoneal and epididymal fat of these animals. However, acute lixisenatide treatment accentuated the body mass loss of tumour-bearing rats. Therefore, lixisenatide, unlike T2DM, does not improve hypoinsulinemia and INS resistance associated with cancer, evidencing that it does not have the same beneficial effects in these two diseases. In addition, lixisenatide aggravated weight loss of tumour-bearing rats, suggesting that its use for treatment of T2DM patients with cancer should be avoided. SIGNIFICANCE OF THE STUDY: Lixisenatide increases insulin secretion and appears to reduce insulin resistance in T2DM. However, lixisenatide treatment does not improve hypoinsulinemia and insulin resistance associated with cancer, as it does in T2DM, and aggravated weight loss, suggesting that its use for treatment of T2DM patients with cancer should be avoided.


Assuntos
Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Glicemia/análise , Caquexia/prevenção & controle , Linhagem Celular Tumoral , Glucose/farmacologia , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Peptídeos/uso terapêutico , Ratos , Ratos Wistar , Transplante Heterólogo , Triglicerídeos/sangue , Redução de Peso/efeitos dos fármacos
2.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 697-705, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128591

RESUMO

Lixisenatide, a glucagon-like peptide-1 receptor agonist, is used to stimulate insulin secretion in patients with type 2 diabetes mellitus. However, its effect on insulin secretion in cancer patients, particularly during the cachexia course, has not yet been evaluated. The purpose of this study was to investigate the lixisenatide effect on INS secretion decline during the cachexia course (2, 6, and 12 days of tumor) in pancreatic islets isolated from Walker-256 tumor-bearing rats. Pancreatic islets of healthy and tumor-bearing rats were incubated in the presence or absence of lixisenatide (10 nM). Tumor-bearing rats showed reduction of body weight and fat and muscle mass, characterizing the development of cachexia, as well as reduction of insulinemia and INS secretion stimulated by glucose (5.6, 8.3, 11.1, 16.7, and 20 mM) on days 2, 6, and/or 12 of tumor. Lixisenatide increased the 16.7 mM glucose-stimulated insulin secretion, but not by 5.6 mM glucose, in the islets of healthy rats, without changing the insulin intracellular content. However, lixisenatide did not prevent the decreased 16.7 mM glucose-stimulated insulin secretion in the pancreatic islets of rats with 2, 6, and 12 days of tumor and neither the decreased insulin intracellular content of rats with 12 days of tumor. In consistency, in vivo treatment with lixisenatide (50 µg kg-1, SC, once daily, for 6 days) visually increased insulinemia of healthy fasted rats, but did not prevent hypoinsulinemia of tumor-bearing rats. In conclusion, Walker-256 tumor-bearing rats showed early decline (2 days of tumor) of insulin secretion, which followed the cachexia course (6 and 12 days of tumor) and was not improved by lixisenatide, evidencing that this insulin secretagogue, used to treat type 2 diabetes, does not have beneficial effect in cancer bearing-rats.


Assuntos
Caquexia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Secreção de Insulina/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Caquexia/metabolismo , Insulina/sangue , Insulina/metabolismo , Masculino , Neoplasias/metabolismo , Ratos Wistar
3.
J Cell Biochem ; 121(11): 4558-4568, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32056265

RESUMO

Cancer-bearing often exhibits hypoinsulinemia, insulin (INS) resistance and glutamine depletion associated with cachexia. However, INS and glutamine effects on cachexia metabolic abnormalities, particularly on tumor-affected proteins related to INS resistance, are poorly known. The main purpose of this study was to investigate the effects of INS and glutamine dipeptide (GDP) treatments on phospho-protein kinase B (p-Akt), and phospho-hormone sensitive lipase (p-HSL) in Walker-256 tumor-bearing rats. INS (NPH, 40 UI/kg, subcutaneous), GDP (1.5 g/kg, oral), INS+GDP or vehicle (control rats) were administered for 13 days, once a day, starting at the day of inoculation of tumor cells. The experiments were performed 4 hours after the last treatment to evaluate acute effects of INS and GDP, besides the chronic effects. INS and/or INS+GDP treatments, which markedly increased the insulinemia, increased the p-Akt: total Akt ratio and prevented the increased p-HSLSer552 : total HSL ratio in the retroperitoneal fat of tumor-bearing rats, without changing the INS resistance and increased expression of factor tumor necrosis-α (TNF-α) in this tissue. INS and INS+GDP also increased the p-Akt: total Akt ratio, whereas GDP and INS+GDP increased the GLUT4 glucose transporter gene expression, in the gastrocnemius muscle of the tumor-bearing rats. Accordingly, treatments with INS and INS+GDP markedly reduced glycemia, increased retroperitoneal fat and attenuated the body mass loss of tumor-bearing rats. In conclusion, hyperinsulinemia induced by high-dose INS treatments increased Akt phosphorylation and prevented increased p-HSLSer552 : total HSL ratio, overlapping INS resistance. These effects are consistent with increased fat mass gain and weight loss (cachexia) attenuation of tumor-bearing rats, evidencing that Akt activation is a potential strategy to prevent loss of fat mass in cancer cachexia.


Assuntos
Caquexia/tratamento farmacológico , Carcinoma 256 de Walker/complicações , Glutamina/farmacologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Glicemia/análise , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Carcinoma 256 de Walker/patologia , Quimioterapia Combinada , Resistência à Insulina , Masculino , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Wistar
4.
Can J Physiol Pharmacol ; 96(5): 498-505, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29304290

RESUMO

Metformin (MET) is widely used in the correction of insulin (INS) resistance and metabolic abnormalities in type 2 diabetes. However, its effect on INS resistance and metabolic disorders associated with cancer cachexia is not established. We investigated the MET effects, isolated or associated with INS, on INS resistance and metabolic changes induced by Walker-256 tumor in rats with advanced cachexia. MET (500 mg·kg-1, oral) and MET + INS (1.0 IU·kg-1, s.c.) were administered for 12 days, starting on the day of tumor cell inoculation. Tumor-bearing rats showed adipose and muscle mass wasting, body mass loss, anorexia, decreased Akt phosphorylation in retroperitoneal and mesenteric adipose tissue, peripheral INS resistance, hypoinsulinemia, reduced INS content and secretion from pancreatic islets, and also inhibition of glycolysis, gluconeogenesis, and glycogenolysis in liver. MET and MET + INS treatments did not prevent these changes. It can be concluded that treatments with MET and MET + INS did not prevent the adipose and muscle mass wasting and body mass loss of tumor-bearing rats possibly by not improving INS resistance. Therefore, MET, used for the treatment of INS resistance in type 2 diabetes, is not effective in improving INS resistance in the advanced stage of cancer cachexia, evidencing that the drug does not have the same beneficial effect in these 2 diseases.


Assuntos
Caquexia/complicações , Caquexia/metabolismo , Resistência à Insulina , Metformina/farmacologia , Neoplasias/complicações , Animais , Caquexia/tratamento farmacológico , Caquexia/patologia , Insulina/metabolismo , Masculino , Metformina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
5.
Eur J Pharmacol ; 806: 67-74, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28390870

RESUMO

Cachexia is the main cause of mortality in advanced cancer patients. We investigated the effects of insulin (INS) and glutamine dipeptide (GDP), isolated or associated, on cachexia and metabolic changes induced by Walker 256 tumor in rats. INS (NPH, 40 UI/kg, sc) or GDP (1.5g/kg, oral gavage) was once-daily administered during 11 days after tumor cell inoculation. GDP, INS or INS+GDP treatments did not influence the tumor growth. However, INS and INS+GDP prevented retroperitoneal fat wasting and body weight loss of tumor-bearing rats. In consistency, INS and INS+GDP prevented the increased expression of triacylglycerol lipase (ATGL) and hormone sensitive lipase (HSL), without changing the expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in the retroperitoneal adipose tissue of tumor-bearing rats. INS and INS+GDP also prevented anorexia and hyperlactatemia of tumor-bearing rats. However, INS and INS+GDP accentuated the loss of muscle mass (gastrocnemius, soleus and long digital extensor) without affecting the myostatin expression in the gastrocnemius muscle and blood corticosterone. GDP treatment did not promote beneficial effects. It can be concluded that treatment with INS (INS or INS+GDP), not with GDP, prevented fat wasting and weight loss in tumor-bearing rats without reducing tumor growth. These effects might be attributed to the reduction of lipases expression (ATGL and LHS) and increased food intake. The results show the physiological function of INS in the suppression of lipolysis induced by cachexia mediators in tumor-bearing rats.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Caquexia/prevenção & controle , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/farmacologia , Lipase/metabolismo , Neoplasias Mamárias Animais/complicações , Redução de Peso/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Caquexia/complicações , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Masculino , Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/fisiopatologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
6.
Life Sci ; 171: 68-74, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034669

RESUMO

AIM: The lipogenic effect of pioglitazone (PGZ), an insulin (INS) sensitizer, is well established. However, few studies have evaluated PGZ effects in preventing weight loss in cancer. We investigated PGZ effects, alone or associated with INS, on INS resistance, cachexia and metabolic abnormalities induced by Walker-256 tumor in rats. MAIN METHODS: PGZ (5.0mg·kg-1, oral) or PGZ+INS (NPH, 1.0UI·kg-1, sc), were once-daily administered during 12days, starting on the day inoculation of Walker-256 tumor cells. Rats were separated in small (about 17g) and big (about 30g) tumor-bearing. KEY FINDINGS: Big tumor-bearing rats showed greater cachexia, blood triacylglycerol and free fatty acids and INS resistance. PGZ and PGZ+INS treatments did not change tumor growth and food intake, but reduced several abnormalities such as INS resistance, increased blood free fatty acids, retroperitoneal fat wasting and body weight loss in small tumor-bearing rats. The prevention of retroperitoneal fat wasting did not involve reduction of tumor necrosis factor-α expression increased. In big tumor-bearing rats, PGZ and PGZ+INS treatments reversed the high blood triacylglycerol and free fatty acids levels, but had no effect on other parameters. SIGNIFICANCE: PGZ and PGZ+INS improved INS peripheral sensitivity, possibly by decreasing blood free fatty acids, and reduced fat tissue wasting and body weight loss in small tumor-bearing rats. The results suggest clinical benefits of PGZ in preventing INS resistance, adipose tissue wasting and weight loss when the tumor is small, i.e., in less severe cachexia.


Assuntos
Caquexia/tratamento farmacológico , Resistência à Insulina , Tiazolidinedionas/farmacologia , Redução de Peso/efeitos dos fármacos , Animais , Masculino , Pioglitazona , Ratos , Ratos Wistar , Tiazolidinedionas/uso terapêutico
7.
J Endocrinol ; 231(3): 235-244, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27803236

RESUMO

Melatonin is a hormone synthesized in the pineal gland, which modulates several functions within the organism, including the synchronization of glucose metabolism and glucose-stimulated insulin secretion (GSIS). Melatonin can mediate different signaling pathways in pancreatic islets through two membrane receptors and via antioxidant or pro-oxidant enzymes modulation. NADPH oxidase (NOX) is a pro-oxidant enzyme responsible for the production of the reactive oxygen specie (ROS) superoxide, generated from molecular oxygen. In pancreatic islets, NOX-derived ROS can modulate glucose metabolism and regulate insulin secretion. Considering the roles of both melatonin and NOX in islets, the aim of this study was to evaluate the association of NOX and ROS production on glucose metabolism, basal and GSIS in pinealectomized rats (PINX) and in melatonin-treated isolated pancreatic islets. Our results showed that ROS content derived from NOX activity was increased in PINX at baseline (2.8 mM glucose), which was followed by a reduction in glucose metabolism and basal insulin secretion in this group. Under 16.7 mM glucose, an increase in both glucose metabolism and GSIS was observed in PINX islets, without changes in ROS content. In isolated pancreatic islets from control animals incubated with 2.8 mM glucose, melatonin treatment reduced ROS content, whereas in 16.7 mM glucose, melatonin reduced ROS and GSIS. In conclusion, our results demonstrate that both basal and stimulated insulin secretion can be regulated by melatonin through the maintenance of ROS homeostasis in pancreatic islets.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Melatonina/fisiologia , NADPH Oxidases/metabolismo , Animais , Glucoquinase/genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Melatonina/farmacologia , NADPH Oxidases/genética , Glândula Pineal/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
8.
Pancreas ; 44(2): 287-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25426612

RESUMO

OBJECTIVES: The aim of the study was to evaluate the potential changes induced by fish oil (FO) supplementation on the redox status of pancreatic islets from healthy rats. To test whether these effects were due to eicosapentaenoic acid and docosahexaenoic acid (ω-3), in vitro experiments were performed. METHODS: Rats were supplemented with FO, and pancreatic islets were obtained. Islets were also treated in vitro with palmitate (P) or eicosapentaenoic acid + docosahexaenoic acid (ω-3). Insulin secretion (GSIS), glucose oxidation, protein expression, and superoxide content were analyzed. RESULTS: The FO group showed a reduction in superoxide content. Moreover, FO reduced the expression of NAD(P)H oxidase subunits and increased superoxide dismutase, without altering ß-cell function. Palmitate increased ß-cell reactive oxygen species (ROS) production, apoptosis, and impaired GSIS. Under these conditions, ω-3 triggered a parallel reduction in ROS production and ß-cell apoptosis induced by P and protected against the impairment in GSIS. There was no difference in mitochondrial ROS production. CONCLUSIONS: Our results show that ω-3 protect pancreatic islets from alterations induced by P. In vivo FO supplementation modulates the redox state of pancreatic ß-cell. Considering that in vitro effects do not involve mitochondrial superoxide production, we can speculate that this protection might involve NAD(P)H oxidase activity.


Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ilhotas Pancreáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Glutationa/metabolismo , Insulina/sangue , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , NADPH Oxidases/metabolismo , Oxirredução , Ácido Palmítico/toxicidade , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
9.
Islets ; 5(4): 139-48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23817296

RESUMO

G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , NADPH Oxidases/fisiologia , Ácido Palmítico/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Superóxidos/metabolismo , Animais , Células Cultivadas , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Metilaminas/farmacologia , Camundongos , Naftalenos/farmacologia , Oniocompostos/farmacologia , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas
10.
Life Sci ; 91(7-8): 244-9, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22820165

RESUMO

AIMS: NADPH oxidase (NOX) is a known source of superoxide anions in phagocytic and non-phagocytic cells. In this study, the presence of this enzyme in human pancreatic islets and the importance of NADPH oxidase in human ß-cell function were investigated. MAIN METHODS AND KEY FINDINGS: In isolated human pancreatic islets, the expression of NADPH oxidase components was evidenced by real-time PCR (p22(PHOX), p47(PHOX) and p67(PHOX)), Western blotting (p47(PHOX) and p67(PHOX)) and immunohistochemistry (p47(PHOX), p67(PHOX) and gp91(PHOX)). Immunohistochemistry experiments showed co-localization of p47(PHOX), p67(PHOX) and gp91(PHOX) (isoform 2 of NADPH oxidase-NOX2) with insulin secreting cells. Inhibition of NADPH oxidase activity impaired glucose metabolism and glucose-stimulated insulin secretion. SIGNIFICANCE: These findings demonstrate the presence of the main intrinsic components of NADPH oxidase comprising the NOX2 isoform in human pancreatic islets, whose activity also contributes to human ß-cell function.


Assuntos
Ilhotas Pancreáticas/enzimologia , NADPH Oxidases/metabolismo , Adulto , Sequência de Bases , Western Blotting , Primers do DNA , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , NADPH Oxidases/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real
11.
Endocrinology ; 152(10): 3614-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21828179

RESUMO

Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on ß-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P)H oxidase. Thus, ROS derived from OA metabolism via NAD(P)H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in ß-cells.


Assuntos
Glucose/farmacologia , Insulina/metabolismo , NADPH Oxidases/fisiologia , Ácido Oleico/farmacologia , Animais , Feminino , Glucose/metabolismo , Secreção de Insulina , Ácido Oleico/metabolismo , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
12.
Islets ; 3(5): 213-23, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21750413

RESUMO

Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in ß-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic ß-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in ß-cells.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Secreção de Insulina
13.
Pancreas ; 40(3): 390-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21206327

RESUMO

OBJECTIVE: The aim of this study was to evaluate the effect of a high-fat diet (HFD) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in rat pancreatic islets. We investigated if changes in NADPH oxidase are connected to beta cell dysfunction reported in obese animals. METHODS: Male Wistar rats were fed a HFD or control diet for 3 months. DNA fragmentation, insulin secretion, and [U-C]glucose oxidation were examined in isolated pancreatic islets. The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were assessed by immunohistochemistry. The protein content of gp91 and p47 was evaluated by Western blotting. Production of reactive oxygen species (ROS) was determined by a fluorescence assay using hydroethidine. RESULTS: Occurrence of DNA fragmentation was reduced in pancreatic islets from HFD rats. There were no differences in oxidative stress markers between the groups. Glucose oxidation and insulin secretion were elevated due to high glucose in pancreatic islets from HFD rats. Protein concentrations of p47 and gp91 subunits were reduced and ROS production was diminished in pancreatic islets from HFD rats. CONCLUSIONS: The diminished content of NADPH oxidase subunits and ROS concentrations may be associated with increased glucose oxidation and insulin secretion in an attempt to compensate for the peripheral insulin resistance elicited by the HFD.


Assuntos
Gorduras na Dieta/administração & dosagem , Ilhotas Pancreáticas/enzimologia , NADPH Oxidases/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Glucoquinase/genética , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/química , NADPH Oxidases/genética , Estresse Oxidativo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proinsulina/genética , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
14.
J Cell Physiol ; 226(4): 1110-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20857410

RESUMO

Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI--diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , NADPH Oxidases/metabolismo , Palmitatos/farmacologia , Superóxidos/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Modelos Biológicos , NADPH Oxidases/genética , Oxirredução/efeitos dos fármacos , Proinsulina/genética , Proinsulina/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Pancreas ; 38(5): 578-84, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19287336

RESUMO

OBJECTIVE: To investigate the action of palmitate on insulin receptor (IR) signaling pathway in rat pancreatic islets. The following proteins were studied: IR substrate-1 and -2 (IRS1 and IRS2), phosphatidylinositol 3-kinase, extracellular signal-regulated protein kinase-1 and -2 (ERK1/2), and signal transducer and activator of transcription 3 (STAT3). METHODS: Immunoblotting and immunoprecipitation assays were used to evaluate the phosphorylation states of IRS1 and IRS2 (tyrosine [Tyr]), ERK1/2 (threonine 202 [Thr202]/Tyr204), and STAT3 (serine [Ser727]). RESULTS: The exposure of rat pancreatic islets to 0.1-mmol/L palmitate for up to 30 minutes produced a significant increase of Tyr phosphorylation in IRS2 but not in IRS1. The association of phosphatidylinositol 3-kinase with IRS2 was also upregulated by palmitate. Exposure to 5.6-mmol/L glucose caused a gradual decrease in ERK1/2 (Thr202/Tyr204) and STAT3 (serine [Ser727]) phosphorylations after 30-minute incubation. The addition of palmitate (0.1 mmol/L), associated with 5.6-mmol/L glucose, abolished these latter effects of glucose after 15-minute incubation. CONCLUSIONS: Palmitate at physiological concentration associated with 5.6-mmol/L glucose activates IR signaling pathway in pancreatic beta cells.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Palmitatos/farmacologia , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Linhagem Celular , Feminino , Glucose/farmacologia , Immunoblotting , Imunoprecipitação , Técnicas In Vitro , Proteínas Substratos do Receptor de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo
16.
Pancreas ; 38(5): 585-92, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19295452

RESUMO

OBJECTIVES: The effect of glucose and palmitate on the phosphorylation of proteins associated with cell growth and survival (extracellular signal-regulated kinase 1/2 [ERK1/2] and stress-activated protein kinase/c-Jun NH2-terminal kinase [SAPK/JNK]) and on the expression of immediate early genes was investigated. METHODS: Groups of freshly isolated rat pancreatic islets were incubated in 10-mmol/L glucose with palmitate, LY294002, or fumonisin B1 for the measurement of the phosphorylation and the content of ERK1/2, JNK/SAPK, and v-akt murine thymoma viral oncongene (AKT) (serine 473) by immunoblotting. The expressions of the immediate early genes, c-fos and c-jun, were evaluated by reverse transcription-polymerase chain reaction. RESULTS: Glucose at 10 mmol/L induced ERK1/2 and AKT phosphorylations and decreased SAPK/JNK phosphorylation. Palmitate (0.1 mmol/L) abolished the glucose effect on ERK1/2, AKT, and SAPK/JNK phosphorylations. LY294002 caused a similar effect. The inhibitory effect of palmitate on glucose-induced ERK1/2 and AKT phosphorylation changes was not observed in the presence of fumonisin B1. Glucose increased c-fos and decreased c-jun expressions. Palmitate and LY294002 abolished these latter glucose effects. The presence of fumonisin B1 abolished the effect induced by palmitate on c-jun expression. CONCLUSIONS: Our results suggest that short-term changes of mitogen-activated protein kinase and AKT signaling pathways and c-fos and c-jun expressions caused by glucose are abolished by palmitate through phosphatidylinositol 3-kinase inhibition via ceramide synthesis.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4/metabolismo , Palmitatos/farmacologia , Animais , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Genes Precoces/genética , Immunoblotting , Técnicas In Vitro , Ilhotas Pancreáticas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...