Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Funct Genomics ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37952099

RESUMO

Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.

2.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830309

RESUMO

Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Chelidonium/metabolismo , Fatores Imunológicos/química , Látex/química , Alcaloides Opiáceos/química , Papaver/metabolismo , Compostos Fitoquímicos/química , Proteínas de Plantas/química , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Chelidonium/genética , Descoberta de Drogas/métodos , Edição de Genes/métodos , Herbivoria/efeitos dos fármacos , Humanos , Papaver/genética , Plantas Geneticamente Modificadas
3.
J Appl Genet ; 62(2): 235-248, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33512663

RESUMO

DNA methylation plays a crucial role in the regulation of gene expression, activity of transposable elements, defense against foreign DNA, and inheritance of specific gene expression patterns. The link between stress exposure and sequence-specific changes in DNA methylation was hypothetical until it was shown that stresses can induce changes in the gene expression through hypomethylation or hypermethylation of DNA. To detect changes in DNA methylation under herbicide stress in two local Zea mays inbred lines exhibiting differential susceptibility to Roundup®, the methylation-sensitive amplified polymorphism (MSAP) technique was used. The overall DNA methylation levels were determined at approximately 60% for both tested lines. The most significant changes were observed for the more sensitive Z. mays line, where 6 h after the herbicide application, a large increase in the level of DNA methylation (attributed to the increase in fully methylated bands (18.65%)) was noted. DNA sequencing revealed that changes in DNA methylation profiles occurred in genes encoding heat shock proteins, membrane proteins, transporters, kinases, lipases, methyltransferases, zinc-finger proteins, cytochromes, and transposons. Herbicide stress-induced changes depended on the Z. mays variety, and the large increase in DNA methylation level in the sensitive line resulted in a lower ability to cope with stress conditions.


Assuntos
Metilação de DNA , Resistência a Herbicidas/genética , Herbicidas , Estresse Fisiológico , Zea mays , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Herbicidas/efeitos adversos , Zea mays/efeitos dos fármacos , Zea mays/genética
4.
Plants (Basel) ; 9(4)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325671

RESUMO

To study genetic variations between genomes of plants that are naturally tolerant and sensitive to glyphosate, we used two Zea mays L. lines traditionally bred in Poland. To overcome the complexity of the maize genome, two sequencing technologies were employed: Illumina and Single Molecule Real-Time (SMRT) PacBio. Eleven thousand structural variants, 4 million SNPs and approximately 800 thousand indels differentiating the two genomes were identified. Detailed analyses allowed to identify 20 variations within the EPSPS gene, but all of them were predicted to have moderate or unknown effects on gene expression. Other genes of the shikimate pathway encoding bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase and chorismate synthase were altered by variants predicted to have a high impact on gene expression. Additionally, high-impact variants located within the genes involved in the active transport of glyphosate through the cell membrane encoding phosphate transporters as well as multidrug and toxic compound extrusion have been identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...