Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int Rep ; 9(6): 1580-1589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899174

RESUMO

Modern competing risks analysis has 2 primary goals in clinical epidemiology as follows: (i) to maximize the clinician's knowledge of etiologic associations existing between potential predictor variables and various cause-specific outcomes via cause-specific hazard models, and (ii) to maximize the clinician's knowledge of noteworthy differences existing in cause-specific patient risk via cause-specific subdistribution hazard models (cumulative incidence functions [CIFs]). A perfect application exists in analyzing the following 4 distinct outcomes after listing for a deceased donor kidney transplant (DDKT): (i) receiving a DDKT, (ii) receiving a living donor kidney transplant (LDKT), (iii) waitlist removal due to patient mortality or a deteriorating medical condition, and (iv) waitlist removal due to other reasons. It is important to realize that obtaining a complete understanding of subdistribution hazard ratios (HRs) is simply not possible without first having knowledge of the multivariable relationships existing between the potential predictor variables and the cause-specific hazards (perspective #1), because the cause-specific hazards form the "building blocks" of CIFs. In addition, though we believe that a worthy and practical alternative to estimating the median waiting-time-to DDKT is to ask, "what is the conditional probability of the patient receiving a DDKT, given that he or she would not previously experience one of the competing events (known as the cause-specific conditional failure probability)," only an appropriate estimator of this conditional type of cumulative incidence should be used (perspective #2). One suggested estimator, the well-known "one minus Kaplan-Meier" approach (censoring competing events), simply does not represent any probability in the presence of competing risks and will almost always produce biased estimates (thus, it should never be used).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...