Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(22): 2416-2427.e7, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37879337

RESUMO

Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.


Assuntos
Ambystoma mexicanum , Senescência Celular , Animais , Ambystoma mexicanum/metabolismo , Via de Sinalização Wnt , Células-Tronco , Proliferação de Células , Extremidades
2.
Aging Cell ; 22(6): e13826, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37025070

RESUMO

Salamanders are able to regenerate their entire limbs throughout lifespan, through a process that involves significant modulation of cellular plasticity. Limb regeneration is accompanied by the endogenous induction of cellular senescence, a state of irreversible cell cycle arrest associated with profound non-cell-autonomous consequences. While traditionally associated with detrimental physiological effects, here, we show that senescent cells can enhance newt limb regeneration. Through a lineage tracing approach, we demonstrate that exogenously derived senescent cells promote dedifferentiation of mature muscle tissue to generate regenerative progenitors. In a paradigm of newt myotube dedifferentiation, we uncover that senescent cells promote myotube cell cycle re-entry and reversal of muscle identity via secreted factors. Transcriptomic profiling and loss of function approaches identify the FGF-ERK signalling axis as a critical mediator of senescence-induced muscle dedifferentiation. While chronic senescence constrains muscle regeneration in physiological mammalian contexts, we thus highlight a beneficial role for cellular senescence as an important modulator of dedifferentiation, a key mechanism for regeneration of complex structures.


Assuntos
Desdiferenciação Celular , Salamandridae , Animais , Salamandridae/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Senescência Celular , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...