Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 30, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212456

RESUMO

BACKGROUND: Lipid droplets (LD), lipid-storing organelles containing neutral lipids like glycerolipids and cholesterol, are increasingly accepted as hallmarks of inflammation. The nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA with over 200 nucleotides, exerts an indispensable impact on regulating both LD agglomeration and autophagy in multiple neurological disorders. However, knowledge as to how NEAT1 modulates the formation of LD and associated signaling pathways is limited. METHODS: In this study, primary microglia were isolated from newborn mice and exposed to oxygen-glucose-deprivation/reoxygenation (OGD/R). To further explore NEAT1-dependent mechanisms, an antisense oligonucleotide (ASO) was adopted to silence NEAT1 under in vitro conditions. Studying NEAT1-dependent interactions with regard to autophagy and LD agglomeration under hypoxic conditions, the inhibitor and activator of autophagy 3-methyladenine (3-MA) and rapamycin (RAPA) were used, respectively. In a preclinical stroke model, mice received intraventricular injections of ASO NEAT1 or control vectors in order to yield NEAT1 knockdown. Analysis of readout parameters included qRT-PCR, immunofluorescence, western blot assays, and behavioral tests. RESULTS: Microglia exposed to OGD/R displayed a temporal pattern of NEAT1 expression, peaking at four hours of hypoxia followed by six hours of reoxygenation. After effectively silencing NEAT1, LD formation and autophagy-related proteins were significantly repressed in hypoxic microglia. Stimulating autophagy in ASO NEAT1 microglia under OGD/R conditions by means of RAPA reversed the downregulation of LD agglomeration and perilipin 2 (PLIN2) expression. On the contrary, application of 3-MA promoted repression of both LD agglomeration and expression of the LD-associated protein PLIN2. Under in vivo conditions, NEAT1 was significantly increased in mice at 24 h post-stroke. Knockdown of NEAT1 significantly alleviated LD agglomeration and inhibited autophagy, resulting in improved cerebral perfusion, reduced brain injury and increased neurological recovery. CONCLUSION: NEAT1 is a key player of LD agglomeration and autophagy stimulation, and NEAT1 knockdown provides a promising therapeutic value against stroke.


Assuntos
RNA Longo não Codificante , Acidente Vascular Cerebral , Animais , Camundongos , Apoptose/genética , Autofagia/genética , Gotículas Lipídicas/metabolismo , Microglia/metabolismo , Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
2.
Theranostics ; 13(12): 4197-4216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554272

RESUMO

Background: Stroke stimulates reactive astrogliosis, aquaporin 4 (AQP4) depolarization and neuroinflammation. Preconditioned extracellular vesicles (EVs) from microglia exposed to hypoxia, in turn, reduce poststroke brain injury. Nevertheless, the underlying mechanisms of such effects are elusive, especially with regards to inflammation, AQP4 polarization, and cerebrospinal fluid (CSF) flow. Methods: Primary microglia and astrocytes were exposed to oxygen-glucose deprivation (OGD) injury. For analyzing the role of AQP4 expression patterns under hypoxic conditions, a co-culture model of astrocytes and microglia was established. Further studies applied a stroke model, where some mice also received an intracisternal tracer infusion of rhodamine B. As such, these in vivo studies involved the analysis of AQP4 polarization, CSF flow, astrogliosis, and neuroinflammation as well as ischemia-induced brain injury. Results: Preconditioned EVs decreased periinfarct AQP4 depolarization, brain edema, astrogliosis, and inflammation in stroke mice. Likewise, EVs promoted postischemic CSF flow and cerebral blood perfusion, and neurological recovery. Under in vitro conditions, hypoxia stimulated M2 microglia polarization, whereas EVs augmented M2 microglia polarization and repressed M1 microglia polarization even further. In line with this, astrocytes displayed upregulated AQP4 clustering and proinflammatory cytokine levels when exposed to OGD, which was reversed by preconditioned EVs. Reduced AQP4 depolarization due to EVs, however, was not a consequence of unspecific inflammatory regulation, since LPS-induced inflammation in co-culture models of astrocytes and microglia did not result in altered AQP4 expression patterns in astrocytes. Conclusions: These findings show that hypoxic microglia may participate in protecting against stroke-induced brain damage by regulating poststroke inflammation, astrogliosis, AQP4 depolarization, and CSF flow due to EV release.


Assuntos
Aquaporina 4 , Lesões Encefálicas , Vesículas Extracelulares , Acidente Vascular Cerebral , Animais , Camundongos , Aquaporina 4/metabolismo , Lesões Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Gliose/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Oxigênio/metabolismo , Acidente Vascular Cerebral/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 41(3): 1127-1145, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33327747

RESUMO

OBJECTIVE: Extracellular vesicles (EVs) derived from neural progenitor cells enhance poststroke neurological recovery, albeit the underlying mechanisms remain elusive. Since previous research described an enhanced poststroke integrity of the blood-brain barrier (BBB) upon systemic transplantation of neural progenitor cells, we examined if neural progenitor cell-derived EVs affect BBB integrity and which cellular mechanisms are involved in the process. Approach and Results: Using in vitro models of primary brain endothelial cell (EC) cultures as well as co-cultures of brain ECs (ECs) and astrocytes exposed to oxygen glucose deprivation, we examined the effects of EVs or vehicle on microvascular integrity. In vitro data were confirmed using a mouse transient middle cerebral artery occlusion model. Cultured ECs displayed increased ABCB1 (ATP-binding cassette transporter B1) levels when exposed to oxygen glucose deprivation, which was reversed by treatment with EVs. The latter was due to an EV-induced inhibition of the NF-κB (nuclear factor-κB) pathway. Using a BBB co-culture model of ECs and astrocytes exposed to oxygen glucose deprivation, EVs stabilized the BBB and ABCB1 levels without affecting the transcellular electrical resistance of ECs. Likewise, EVs yielded reduced Evans blue extravasation, decreased ABCB1 expression as well as an inhibition of the NF-κB pathway, and downstream matrix metalloproteinase 9 (MMP-9) activity in stroke mice. The EV-induced inhibition of the NF-κB pathway resulted in a poststroke modulation of immune responses. CONCLUSIONS: Our findings suggest that EVs enhance poststroke BBB integrity via ABCB1 and MMP-9 regulation, attenuating inflammatory cell recruitment by inhibition of the NF-κB pathway. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/fisiologia , NF-kappa B/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Oxigênio/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Transcrição RelA/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
4.
BMC Neurosci ; 17(1): 78, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903258

RESUMO

BACKGROUND: Myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for multiple sclerosis. The characteristic feature of the MOG-EAE model in Brown Norway rats is consistent involvement of the spinal cord resulting in limb paresis. The aim of the study was to investigate whether early subclinical gait abnormalities are present in this animal model and can be detected by CatWalk XT, a fully automated gait analysis system. Furthermore, we investigated the usability of CatWalk system for treatment studies. RESULTS: Our gait analysis showed no preclinical abnormalities in MOG-EAE animals. Nevertheless, we characterized a combination of gait parameters that display a high predictive capacity in regard to disease onset. Our detailed histopathological analysis of the spinal cord revealed that lesion formation starts in the lumbar region and propagates toward the cervical part of the spinal cord during the disease course. In the treatment study, the stabilization of gait parameters under the treatment with methylprednisolone was detected in CatWalk as well as in traditional EAE-scoring system. CONCLUSIONS: The results from CatWalk test indicate no benefit of lab-intensive automated gait system in EAE-model with chronic-progressive disease course as well as in therapeutic studies with pronounced effect on the severity of clinical symptoms. However, due to its quantitative and objective nature this system may display a refined test to detect small but functional relevant changes in regeneration-orientated studies.


Assuntos
Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/fisiopatologia , Marcha , Animais , Anti-Inflamatórios/farmacologia , Área Sob a Curva , Automação Laboratorial , Fenômenos Biomecânicos , Progressão da Doença , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Lateralidade Funcional , Marcha/efeitos dos fármacos , Imuno-Histoquímica , Modelos Logísticos , Metilprednisolona/farmacologia , Distribuição Aleatória , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia
5.
Toxins (Basel) ; 4(12): 1535-51, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23242320

RESUMO

It has previously been shown that the biosynthesis of the mycotoxins ochratoxin A and B and of citrinin by Penicillium is regulated by light. However, not only the biosynthesis of these mycotoxins, but also the molecules themselves are strongly affected by light of certain wavelengths. The white light and blue light of 470 and 455 nm are especially able to degrade ochratoxin A, ochratoxin B and citrinin after exposure for a certain time. After the same treatment of the secondary metabolites with red (627 nm), yellow (590 nm) or green (530 nm) light or in the dark, almost no degradation occurred during that time indicating the blue light as the responsible part of the spectrum. The two derivatives of ochratoxin (A and B) are degraded to certain definitive degradation products which were characterized by HPLC-FLD-FTMS. The degradation products of ochratoxin A and B did no longer contain phenylalanine however were still chlorinated in the case of ochratoxin A. Citrinin is completely degraded by blue light. A fluorescent band was no longer visible after detection by TLC suggesting a higher sensitivity and apparently greater absorbance of energy by citrinin. The fact that especially blue light degrades the three secondary metabolites is apparently attributed to the absorption spectra of the metabolites which all have an optimum in the short wave length range. The absorption range of citrinin is, in particular, broader and includes the wave length of blue light. In wheat, which was contaminated with an ochratoxin A producing culture of Penicillium verrucosum and treated with blue light after a pre-incubation by the fungus, the concentration of the preformed ochratoxin A reduced by roughly 50% compared to the control and differed by > 90% compared to the sample incubated further in the dark. This indicates that the light degrading effect is also exerted in vivo, e.g., on food surfaces. The biological consequences of the light instability of the toxins are discussed.


Assuntos
Citrinina/efeitos da radiação , Luz , Ocratoxinas/efeitos da radiação , Ocratoxinas/biossíntese , Penicillium/metabolismo , Fotólise , Triticum/microbiologia , Triticum/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...