Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(4): 2232-2237, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38275285

RESUMO

"Click organocatalysis" uses mutually orthogonal click reactions to organocatalyze a click reaction. We report the development of an isobenzofuran organocatalyst that increases the rate and regioselectivity of an azide-alkyne cycloaddition. The organocatalytic cycle consists of (1) a Diels-Alder reaction of an alkyne with a diarylisobenzofuran to form a benzooxanorbornadiene, (2) a 1,3-dipolar cycloaddition with an azide to form a 4,5-dihydro-1,2,3-triazole, and (3) a retro-Diels-Alder reaction that releases the triazole product and regenerates the diarylisobenzofuran organocatalyst. The diarylisobenzofuran organocatalyst was computationally designed to catalyze the reaction of perfluorophenyl azide and methyl propiolate to selectively form a 1,4-triazole product. Experimental validation of the designed organocatalyst was obtained with methyl 4-azido-2,3,5,6-tetrafluorobenzoate and methyl propiolate.

2.
Tetrahedron Lett ; 1302023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37860707

RESUMO

We combine the effects of spirocyclization and hyperconjugation to increase the Diels-Alder reactivity of the 4H-pyrazole scaffold. A density functional theory (DFT) investigation predicts that 4H-pyrazoles containing an oxetane functionality at the saturated center are extremely reactive despite having a relatively high-lying lowest unoccupied molecular orbital (LUMO) energy.

3.
Chem Commun (Camb) ; 59(30): 4451-4454, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36987784

RESUMO

4H-Pyrazoles are emerging as useful click reagents. Fluorinating the saturated center enables 4H-pyrazoles to react rapidly as Diels-Alder dienes without a catalyst but compromises the stability of these dienes under physiological conditions. To identify more stable 4H-pyrazoles for bioorthogonal chemistry applications, we investigated the Diels-Alder reactivity and biological stability of three 4-oxo-substituted 4H-pyrazoles. We found that these dienes undergo rapid Diels-Alder reactions with endo-bicyclo[6.1.0]non-4-yne (BCN) while being much more stable to biological nucleophiles than their fluorinated counterparts. We attribute the rapid Diels-Alder reactivity of the optimal oxygen-substituted pyrazole to a combination of antiaromaticity, predistortion, and spirocyclization. Their reactivity and stability suggest that 4-oxo-4H-pyrazoles can be useful bioorthogonal reagents.

4.
ACS Med Chem Lett ; 14(2): 171-175, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793428

RESUMO

HIV-1 protease is an important target for pharmaceutical intervention in HIV infection. Extensive structure-based drug design led to darunavir becoming a key chemotherapeutic agent. We replaced the aniline group of darunavir with a benzoxaborolone to form BOL-darunavir. This analogue has the same potency as darunavir as an inhibitor of catalysis by wild-type HIV-1 protease and, unlike darunavir, does not lose potency as an inhibitor of the common D30N variant. Moreover, BOL-darunavir is much more stable to oxidation than is a simple phenylboronic acid analogue of darunavir. X-ray crystallography revealed an extensive network of hydrogen bonds between the enzyme and benzoxaborolone moiety, including a novel direct hydrogen bond from a main-chain nitrogen to the carbonyl oxygen of the benzoxaborolone moiety that displaces a water molecule. These data highlight the utility of benzoxaborolone as a pharmacophore.

5.
J Org Chem ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374612

RESUMO

Organoboron acids are stable, organic-soluble Lewis acids with potential application as catalysts for a wide variety of chemical reactions. In this review, we summarize the utility of boronic and borinic acids, as well as boric acid, as catalysts for organic transformations. Typically, the catalytic processes exploit the Lewis acidity of trivalent boron, enabling the reversible formation of a covalent bond with oxygen. Our focus is on recent developments in the catalysis of dehydration, carbonyl condensation, acylation, alkylation, and cycloaddition reactions. We conclude that organoboron acids have a highly favorable prospectus as the source of new catalysts.

6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653951

RESUMO

Despite their desirable attributes, boronic acids have had a minimal impact in biological contexts. A significant problem has been their oxidative instability. At physiological pH, phenylboronic acid and its boronate esters are oxidized by reactive oxygen species at rates comparable to those of thiols. After considering the mechanism and kinetics of the oxidation reaction, we reasoned that diminishing electron density on boron could enhance oxidative stability. We found that a boralactone, in which a carboxyl group serves as an intramolecular ligand for the boron, increases stability by 104-fold. Computational analyses revealed that the resistance to oxidation arises from diminished stabilization of the p orbital of boron that develops in the rate-limiting transition state of the oxidation reaction. Like simple boronic acids and boronate esters, a boralactone binds covalently and reversibly to 1,2-diols such as those in saccharides. The kinetic stability of its complexes is, however, at least 20-fold greater. A boralactone also binds covalently to a serine side chain in a protein. These attributes confer unprecedented utility upon boralactones in the realms of chemical biology and medicinal chemistry.


Assuntos
Boro/química , Ácidos Borônicos/química , Concentração de Íons de Hidrogênio , Oxirredução
7.
J Bacteriol ; 187(10): 3438-44, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866930

RESUMO

Rhodococcus equi is a facultative intracellular pathogen which proliferates rapidly in both manure-enriched soil and alveolar macrophages. Although both environments are characterized by extremely low concentrations of free iron, very little is known regarding the strategies employed by R. equi to thrive under these conditions. This paper reports the characterization of an R. equi transposome mutant that fails to grow at low iron concentrations. The transposome was shown to be inserted into iupA, the first gene of the iupABC operon encoding an ABC transport system highly similar to siderophore uptake systems. Disruption of the iupA gene also resulted in a failure of R. equi to utilize heme and hemoglobin as a source of iron. Introduction of the iupABC operon in trans restored the wild-type phenotype of the mutant strain. iupABC transcripts were 180-fold more abundant in R. equi grown in iron-depleted medium than in organisms grown in iron-replete medium. Proliferation of the iupABC mutant strain in macrophages was comparable to that of the wild-type strain. Furthermore, the iupABC mutant was not attenuated in mice, showing that the iupABC operon is not required for virulence.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Infecções por Actinomycetales/microbiologia , Ferro/metabolismo , Rhodococcus equi/genética , Rhodococcus equi/metabolismo , Animais , Linhagem Celular , Elementos de DNA Transponíveis/genética , Hemina/metabolismo , Hemoglobinas/metabolismo , Macrófagos/citologia , Macrófagos/microbiologia , Camundongos , Mutagênese , Óperon/fisiologia , Rhodococcus equi/crescimento & desenvolvimento , Rhodococcus equi/patogenicidade , Transcrição Gênica/fisiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...