Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1842(12 Pt B): 2569-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25092170

RESUMO

Hypercapnic acidosis activates Ca²âº channels and increases intracellular Ca²âº levels in neurons of the locus coeruleus, a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca²âº-activated K⁺ channels, in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in locus coeruleus neurons. Here, we present evidence that the Ca²âº current is activated by a HCO(3)(-)-sensitive pathway. The increase in HCO(3)(-) associated with hypercapnia activates HCO(3)(-)-sensitive adenylyl cyclase (soluble adenylyl cyclase). This results in an increase in cyclic adenosine monophosphate levels and activation of Ca²âº channels via cyclic adenosine monophosphate-activated protein kinase A. We also show the presence of soluble adenylyl cyclase in the cytoplasm of locus coeruleus neurons, and that the cyclic adenosine monophosphate analogue db-cyclic adenosine monophosphate increases Ca²âºi. Disrupting this pathway by decreasing HCO(3)(-) levels during acidification or inhibiting either soluble adenylyl cyclase or protein kinase A, but not transmembrane adenylyl cyclase, can increase the magnitude of the firing rate response to hypercapnia in locus coeruleus neurons from older neonates to the same extent as inhibition of K⁺ channels. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/metabolismo , Carbonatos/metabolismo , Locus Cerúleo/metabolismo , Neurônios/metabolismo , Animais , Locus Cerúleo/citologia , Locus Cerúleo/enzimologia , Neurônios/enzimologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...