Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630884

RESUMO

The innate immune system is the first line of defense against external threats through the initiation and regulation of inflammation. Macrophage differentiation into functional phenotypes influences the fate of nanomaterials taken up by these immune cells. High-resolution electron microscopy was used to investigate the uptake, distribution, and biotransformation of nanoceria in human and murine M1 and M2 macrophages in unprecedented detail. We found that M1 and M2 macrophages internalize nanoceria differently. M1-type macrophages predominantly sequester nanoceria near the plasma membrane, whereas nanoceria are more uniformly distributed throughout M2 macrophage cytoplasm. In contrast, both macrophage phenotypes show identical nanoceria biotransformation to cerium phosphate nanoneedles and simultaneous nanoceria with ferritin co-precipitation within the cells. Ferritin biomineralization is a direct response to nanoparticle uptake inside both macrophage phenotypes. We also found that the same ferritin biomineralization mechanism occurs after the uptake of Ce-ions into polarized macrophages and into unpolarized human monocytes and murine RAW 264.7 cells. These findings emphasize the need for evaluating ferritin biomineralization in studies that involve the internalization of nano objects, ranging from particles to viruses to biomolecules, to gain greater mechanistic insights into the overall immune responses to nano objects.

3.
Orthod Craniofac Res ; 24(4): 494-501, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33540478

RESUMO

OBJECTIVES: To evaluate the role of serotonin in the development of a biomimetic enamel-like material in vitro. SETTING AND SAMPLE POPULATION: Immortalized murine oral keratinocytes raised from adult mouse mucosa were cultured in vitro. In addition, specimens incorporating molar tooth buds harvested from mice were included in our studies. MATERIALS AND METHODS: We used cell-based scaffold-free tissue engineering to assemble three-dimensional (3D) organoids into complex tissue constructs that closely emulate the complexity of adult enamel. We also analysed mouse molar specimens using immunohistochemistry for serotonin expression as well as its cognate receptor. RESULTS: TGF-ß1-reprogrammed murine oral keratinocytes formed organoids that laid down an amelogenin-rich protein matrix when grown as three-dimensional (3D) cultures in the presence of serotonin. Following mineralization, the newly formed crystals were densified under pressure and vacuum to produce a biomimetic enamel-like material that demonstrated parallel alignment of hydroxyapatite crystals with some interspaced residual organoid matter into enamel prism-like structures conferring size, mechanical properties comparable to tooth enamel, including light translucency. Serotonin expression was localized by immunohistochemistry proximal to the enamel organ of developing molar buds. Moreover, serotonin HTRb2 receptor expression was localized on ameloblasts within the enamel organ proximal to the area where serotonin was immunolocalized. CONCLUSIONS: Our results demonstrate that serotonin is inductive in the development of a biomimetic enamel-like material from reprogrammed oral epithelial keratinocytes in vitro. The facileness of harvesting adult somatic cells together with the versatility of our approach offers exciting opportunities to address regenerative challenges linked to lost enamel.


Assuntos
Biomimética , Serotonina , Amelogenina , Animais , Esmalte Dentário , Queratinócitos , Camundongos
4.
Nanotoxicology ; 14(6): 827-846, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32552239

RESUMO

Prior studies showed nanoparticle clearance was different in C57BL/6 versus BALB/c mice, strains prone to Th1 and Th2 immune responses, respectively. Objective: Assess nanoceria (cerium oxide, CeO2 nanoparticle) uptake time course and organ distribution, cellular and oxidative stress, and bioprocessing as a function of mouse strain. Methods: C57BL/6 and BALB/c female mice were i.p. injected with 10 mg/kg nanoceria or vehicle and terminated 0.5 to 24 h later. Organs were collected for cerium analysis; light and electron microscopy with elemental mapping; and protein carbonyl, IL-1ß, and caspase-1 determination. Results: Peripheral organ cerium significantly increased, generally more in C57BL/6 mice. Caspase-1 was significantly elevated in the liver at 6 h, to a greater extent in BALB/c mice, suggesting inflammasome pathway activation. Light microscopy revealed greater liver vacuolation in C57BL/6 mice and a nanoceria-induced decrease in BALB/c but not C57BL/6 mice vacuolation. Nanoceria increased spleen lymphoid white pulp cell density in BALB/c but not C57BL/6 mice. Electron microscopy showed intracellular nanoceria particles bioprocessed to form crystalline cerium phosphate nanoneedles. Ferritin accumulation was greatly increased proximal to the nanoceria, forming core-shell-like structures in C57BL/6 but even distribution in BALB/c mice. Conclusions: BALB/c mice were more responsive to nanoceria-induced effects, e.g. liver caspase-1 activation, reduced liver vacuolation, and increased spleen cell density. Nanoceria uptake, initiation of bioprocessing, and crystalline cerium phosphate nanoneedle formation were rapid. Ferritin greatly increased with a macrophage phenotype-dependent distribution. Further study will be needed to understand the mechanisms underlying the observed differences.


Assuntos
Cério/toxicidade , Fígado/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Baço/efeitos dos fármacos , Animais , Cério/química , Cério/metabolismo , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Nanopartículas/química , Nanopartículas/metabolismo , Fosfatos/metabolismo , Especificidade da Espécie , Baço/metabolismo , Propriedades de Superfície , Distribuição Tecidual
5.
Chem Res Toxicol ; 33(5): 1145-1162, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32349469

RESUMO

A variety of imaging and analytical methods have been developed to study nanoparticles in cells. Each has its benefits, limitations, and varying degrees of expense and difficulties in implementation. High-resolution analytical scanning transmission electron microscopy (HRSTEM) has the unique ability to image local cellular environments adjacent to a nanoparticle at near atomic resolution and apply analytical tools to these environments such as energy dispersive spectroscopy and electron energy loss spectroscopy. These tools can be used to analyze particle location, translocation and potential reformation, ion dispersion, and in vivo synthesis of second-generation nanoparticles. Such analyses can provide in depth understanding of tissue-particle interactions and effects that are caused by the environmental "invader" nanoparticles. Analytical imaging can also distinguish phases that form due to the transformation of "invader" nanoparticles in contrast to those that are triggered by a response mechanism, including the commonly observed iron biomineralization in the form of ferritin nanoparticles. The analyses can distinguish ion species, crystal phases, and valence of parent nanoparticles and reformed or in vivo synthesized phases throughout the tissue. This article will briefly review the plethora of methods that have been developed over the last 20 years with an emphasis on the state-of-the-art techniques used to image and analyze nanoparticles in cells and highlight the sample preparation necessary for biological thin section observation in a HRSTEM. Specific applications that provide visual and chemical mapping of the local cellular environments surrounding parent nanoparticles and second-generation phases are demonstrated, which will help to identify novel nanoparticle-produced adverse effects and their associated mechanisms.


Assuntos
Nanoestruturas/efeitos adversos , Nanoestruturas/análise , Especificidade de Órgãos , Microscopia Eletrônica de Transmissão
6.
Sci Rep ; 10(1): 458, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949204

RESUMO

Barium sulfate (BaSO4) was considered to be poorly-soluble and of low toxicity, but BaSO4 NM-220 showed a surprisingly short retention after intratracheal instillation in rat lungs, and incorporation of Ba within the bones. Here we show that static abiotic dissolution cannot rationalize this result, whereas two dynamic abiotic dissolution systems (one flow-through and one flow-by) indicated 50% dissolution after 5 to 6 days at non-saturating conditions regardless of flow orientation, which is close to the in vivo half-time of 9.6 days. Non-equilibrium conditions were thus essential to simulate in vivo biodissolution. Instead of shrinking from 32 nm to 23 nm (to match the mass loss to ions), TEM scans of particles retrieved from flow-cells showed an increase to 40 nm. Such transformation suggested either material transport through interfacial contact or Ostwald ripening at super-saturating conditions and was also observed in vivo inside macrophages by high-resolution TEM following 12 months inhalation exposure. The abiotic flow cells thus adequately predicted the overall pulmonary biopersistence of the particles that was mediated by non-equilibrium dissolution and recrystallization. The present methodology for dissolution and transformation fills a high priority gap in nanomaterial hazard assessment and is proposed for the implementation of grouping and read-across by dissolution rates.


Assuntos
Sulfato de Bário/química , Sulfato de Bário/metabolismo , Biomimética/instrumentação , Pulmão/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Administração por Inalação , Sulfato de Bário/administração & dosagem , Cinética , Solubilidade
7.
Environ Sci Nano ; 6(5): 1478-1492, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31372227

RESUMO

Nanoparticle dissolution in local milieu can affect their ecotoxicity and therapeutic applications. For example, carboxylic acid release from plant roots can solubilize nanoceria in the rhizosphere, affecting cerium uptake in plants. Nanoparticle dispersions were dialyzed against ten carboxylic acid solutions for up to 30 weeks; the membrane passed cerium-ligand complexes but not nanoceria. Dispersion and solution samples were analyzed for cerium by inductively coupled plasma mass spectrometry (ICP-MS). Particle size and shape distributions were measured by transmission electron microscopy (TEM). Nanoceria dissolved in all carboxylic acid solutions, leading to cascades of progressively smaller nanoparticles and producing soluble products. The dissolution rate was proportional to nanoparticle surface area. Values of the apparent dissolution rate coefficients varied with the ligand. Both nanoceria size and shape distributions were altered by the dissolution process. Density functional theory (DFT) estimates for some possible Ce(IV) products showed that their dissolution was thermodynamically favored. However, dissolution rate coefficients did not generally correlate with energy of formation values. The surface-controlled dissolution model provides a quantitative measure for nanoparticle dissolution rates: further studies of dissolution cascades should lead to improved understanding of mechanisms and processes at nanoparticle surfaces.

8.
Nanotoxicology ; 13(4): 455-475, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30729879

RESUMO

Ligands that accelerate nanoceria dissolution may greatly affect its fate and effects. This project assessed the carboxylic acid contribution to nanoceria dissolution in aqueous, acidic environments. Nanoceria has commercial and potential therapeutic and energy storage applications. It biotransforms in vivo. Citric acid stabilizes nanoceria during synthesis and in aqueous dispersions. In this study, citrate-stabilized nanoceria dispersions (∼4 nm average primary particle size) were loaded into dialysis cassettes whose membranes passed cerium salts but not nanoceria particles. The cassettes were immersed in iso-osmotic baths containing carboxylic acids at pH 4.5 and 37 °C, or other select agents. Cerium atom material balances were conducted for the cassette and bath by sampling of each chamber and cerium quantitation by ICP-MS. Samples were collected from the cassette for high-resolution transmission electron microscopy observation of nanoceria size. In carboxylic acid solutions, nanoceria dissolution increased bath cerium concentration to >96% of the cerium introduced as nanoceria into the cassette and decreased nanoceria primary particle size in the cassette. In solutions of citric, malic, and lactic acids and the ammonium ion ∼15 nm, ceria agglomerates persisted. In solutions of other carboxylic acids, some select nanoceria agglomerates grew to ∼1 micron. In carboxylic acid solutions, dissolution half-lives were 800-4000 h; in water and horseradish peroxidase they were ≥55,000 h. Extending these findings to in vivo and environmental systems, one expects acidic environments containing carboxylic acids to degrade nanoceria by dissolution; two examples would be phagolysosomes and in the plant rhizosphere.


Assuntos
Ácidos Carboxílicos/química , Cério/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Ligantes , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula , Solubilidade , Propriedades de Superfície
9.
Inhal Toxicol ; 30(9-10): 381-396, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30572762

RESUMO

Accumulating evidence indicates the developing central nervous system (CNS) is a target of air pollution toxicity. Epidemiological reports increasingly demonstrate that exposure to the particulate matter (PM) fraction of air pollution during neurodevelopment is associated with an increased risk of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). These observations are supported by animal studies demonstrating prenatal exposure to concentrated ambient PM induces neuropathologies characteristic of ASD, including ventriculomegaly and aberrant corpus callosum (CC) myelination. Given the role of the CC and cerebellum in ASD etiology, this study tested whether prenatal exposure to concentrated ambient particles (CAPs) produced pathological features in offspring CC and cerebella consistent with ASD. Analysis of cerebellar myelin density revealed male-specific hypermyelination in CAPs-exposed offspring at postnatal days (PNDs) 11-15 without alteration of cerebellar area. Atomic absorption spectroscopy (AAS) revealed elevated iron (Fe) in the cerebellum of CAPs-exposed female offspring at PNDs 11-15, which connects with previously observed elevated Fe in the female CC. The presence of Fe inclusions, along with aluminum (Al) and silicon (Si) inclusions, were confirmed at nanoscale resolution in the CC along with ultrastructural myelin sheath damage. Furthermore, RNAseq and gene ontology (GO) enrichment analyses revealed cerebellar gene expression was significantly affected by sex and prenatal CAPs exposure with significant enrichment in inflammation and transmembrane transport processes that could underlie observed myelin and metal pathologies. Overall, this study highlights the ability of PM exposure to disrupt myelinogenesis and elucidates novel molecular targets of PM-induced developmental neurotoxicity.


Assuntos
Poluição do Ar/efeitos adversos , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Ferro/análise , Material Particulado/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Animais , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Feminino , Masculino , Camundongos , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Gravidez
10.
Toxicol Appl Pharmacol ; 361: 81-88, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30563646

RESUMO

Human autopsied lung sections from a resident in the Quebec asbestos region were examined. The study utilized high resolution transmission electron microscopy, scanning transmission electron microscopy (HRTEM/STEM) with the analytical capabilities of electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) detectors. We report the first analytical ultrastructural characteristics of EMPs, detailing chemical concentration gradients inside the iron-protein coatings and lateral elemental gradients in the local tissue regions. It is shown that the EMPs are subjected to bioprocessing which involves physicochemical transformations and also an elemental transport mechanism that alters the inhaled EMP as well as the surrounding cellular matrix. At high resolution imaging the iron-rich coating around the EMP was observed to have a distinct channel-like nanostructure with some parallel aligned nanofibrils that are reminiscent of tooth enamel which consists of biomineralized nanocomposites with alternating organic/inorganic matrices.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Minerais/toxicidade , Material Particulado/toxicidade , Poluentes Ocupacionais do Ar/metabolismo , Autopsia , Humanos , Pulmão/patologia , Pulmão/ultraestrutura , Microscopia Eletrônica de Transmissão , Minerais/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Material Particulado/metabolismo , Pleura/metabolismo , Fibrose Pulmonar/patologia , Espectrometria por Raios X
11.
Toxicol Pathol ; 46(1): 47-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145781

RESUMO

This is the first utilization of advanced analytical electron microscopy methods, including high-resolution transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, electron energy loss spectroscopy, and energy-dispersive X-ray spectroscopy mapping to characterize the organ-specific bioprocessing of a relatively inert nanomaterial (nanoceria). Liver and spleen samples from rats given a single intravenous infusion of nanoceria were obtained after prolonged (90 days) in vivo exposure. These advanced analytical electron microscopy methods were applied to elucidate the organ-specific cellular and subcellular fate of nanoceria after its uptake. Nanoceria is bioprocessed differently in the spleen than in the liver.


Assuntos
Cério/toxicidade , Fígado/efeitos dos fármacos , Microscopia Eletrônica/métodos , Baço/efeitos dos fármacos , Animais , Fígado/patologia , Fígado/ultraestrutura , Masculino , Ratos , Ratos Sprague-Dawley , Baço/patologia , Baço/ultraestrutura
12.
Adv Exp Med Biol ; 947: 71-100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168666

RESUMO

Adverse human health impacts due to occupational and environmental exposures to manufactured nanoparticles are of concern and pose a potential threat to the continued industrial use and integration of nanomaterials into commercial products. This chapter addresses the inter-relationship between dose and response and will elucidate on how the dynamic chemical and physical transformation and breakdown of the nanoparticles at the cellular and subcellular levels can lead to the in vivo formation of new reaction products. The dose-response relationship is complicated by the continuous physicochemical transformations in the nanoparticles induced by the dynamics of the biological system, where dose, bio-processing, and response are related in a non-linear manner. Nanoscale alterations are monitored using high-resolution imaging combined with in situ elemental analysis and emphasis is placed on the importance of the precision of characterization. The result is an in-depth understanding of the starting particles, the particle transformation in a biological environment, and the physiological response.


Assuntos
Nanopartículas/efeitos adversos , Nanopartículas/química , Meio Ambiente , Exposição Ambiental/efeitos adversos , Humanos , Nanoestruturas/efeitos adversos , Nanoestruturas/química
13.
Chempluschem ; 79(8): 1083-1088, 2014 08.
Artigo em Inglês | MEDLINE | ID: mdl-26322251

RESUMO

The cytotoxicity of ceria ultimately lies in its electronic structure, which is defined by the crystal structure, composition, and size. Despite previous studies focused on ceria uptake, distribution, biopersistance, and cellular effects, little is known about its chemical and structural stability and solubility once sequestered inside the liver. Mechanisms will be presented that elucidate the in vivo transformation in the liver. In vivo processed ceria reveals a particle-size effect towards the formation of ultrafines, which represent a second generation of ceria. A measurable change in the valence reduction of the second-generation ceria can be linked to an increased free-radical scavenging potential. The in vivo processing of the ceria nanoparticles in the liver occurs in temporal relation to the brain cellular and protein clearance responses that stem from the ceria uptake. This information is critical to establish a possible link between cellular processes and the observed in vivo transformation of ceria. The temporal linkage between the reversal of the pro-oxidant effect (brain) and ceria transformation (liver) suggests a cause-effect relationship.

14.
Nanotoxicology ; 8 Suppl 1: 155-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24350865

RESUMO

Ceria engineered nanomaterials (ENMs) have very promising commercial and therapeutic applications. Few reports address the effects of nanoceria in intact mammals, let alone long term exposure. This knowledge is essential to understand potential therapeutic applications of nanoceria in relation to its hazard assessment. The current study elucidates oxidative stress responses in the rat hippocampus 1 and 20 h, and 1, 7, 30 and 90 days following a single systemic infusion of 30 nm nanoceria. The results are incorporated into a previously described hierarchical oxidative stress (HOS) model. During the 1-20 h period, increases of the GSSG: GSH ratio and cytoprotective phase-II antioxidants were observed. During the 1-7 d period, cytoprotective phase-II antioxidants activities were inhibited with concomitant elevation of protein carbonyl (PC), 3-nitrotyrosine (3NT), heme oxygenase-1 (HO-1), cytokine IL-1ß and the autophagy marker LC-3AB. At 30 day post ceria infusion, oxidative stress had its major impact. Phase-II enzyme activities were inhibited; concurrently PC, 3NT, HO-1 and Hsp70 levels were elevated along with augmentation of IL-1ß, pro-apoptotic pro-caspase-3 and LC-3AB levels. This progress of escalating oxidative stress was reversed at 90 days when phase-II enzyme levels and activities were restored to normal levels, PC and 3NT levels were reduced to baseline, cytokine and pro-caspase-3 levels were suppressed, and cellular redox balance was restored in the rat hippocampus. This study demonstrates that a single administration of nanoceria induced oxidative stress that escalates to 30 days then terminates, in spite of the previously reported continued presence of nanoceria in peripheral organs. These results for the first time confirm in vivo the HOS model of response to ENM previously posited based on in vitro studies and extends this prior hierarchical oxidative stress model that described three tiers to a 4th tier, characterized by resolution of the oxidative stress and return to normal conditions.


Assuntos
Cério/toxicidade , Hipocampo/fisiologia , Nanopartículas/toxicidade , Estresse Oxidativo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Microscopia Eletrônica de Transmissão , Ratos
15.
Nanomedicine ; 9(3): 398-407, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22960425

RESUMO

The aims were to determine the biodistribution, translocation, and persistence of nanoceria in the brain and selected peripheral organs. Nanoceria is being studied as an anti-oxidant therapeutic. Five, 15, 30, or 55 nm ceria was iv infused into rats which were terminated 1, 20, or 720 h later. Cerium was determined in blood, brain, liver, and spleen. Liver and spleen contained a large percentage of the dose, from which there was no significant clearance over 720 h, associated with adverse changes. Very little nanoceria entered brain parenchyma. The results suggest brain delivery of nanoceria will be a challenge. FROM THE CLINICAL EDITOR: This team of investigators revealed that nanoceria, which is being studied as an anti-oxidant, has very limited uptake by the brain regardless of the range of sizes studied, suggesting major challenges in the application of this novel approach in the central nervous system.


Assuntos
Cério/farmacocinética , Nanoestruturas/química , Nanotecnologia , Tamanho da Partícula , Animais , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Nanoestruturas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Espalhamento de Radiação , Baço/metabolismo , Baço/ultraestrutura , Distribuição Tecidual
16.
Science ; 337(6096): 832-5, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22904009

RESUMO

Oxidation of nitric oxide (NO) for subsequent efficient reduction in selective catalytic reduction or lean NO(x) trap devices continues to be a challenge in diesel engines because of the low efficiency and high cost of the currently used platinum (Pt)-based catalysts. We show that mixed-phase oxide materials based on Mn-mullite (Sm, Gd)Mn(2)O(5) are an efficient substitute for the current commercial Pt-based catalysts. Under laboratory-simulated diesel exhaust conditions, this mixed-phase oxide material was superior to Pt in terms of cost, thermal durability, and catalytic activity for NO oxidation. This oxide material is active at temperatures as low as 120°C with conversion maxima of ~45% higher than that achieved with Pt. Density functional theory and diffuse reflectance infrared Fourier transform spectroscopy provide insights into the NO-to-NO(2) reaction mechanism on catalytically active Mn-Mn sites via the intermediate nitrate species.

17.
Neurotoxicology ; 33(5): 1147-55, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750192

RESUMO

The objective of this study was to determine the residual pro-or anti-oxidant effects in rat brain 30 days after systemic administration of a 5 nm citrate-stabilized ceria dispersion. A ∼4% aqueous ceria dispersion was iv-infused (0 or 85 mg/kg) into rats which were terminated 30 days later. Ceria concentration, localization, and chemical speciation in the brain was assessed by inductively coupled plasma mass spectrometry (ICP-MS), light and electron microscopy (EM), and electron energy loss spectroscopy (EELS), respectively. Pro- or anti-oxidant effects were evaluated by measuring levels of protein carbonyls (PC), 3-nitrotyrosine (3NT), and protein-bound-4-hydroxy-2-trans-nonenal (HNE) in the hippocampus, cortex, and cerebellum. Glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase levels and activity were measured in addition to levels of inducible nitric oxide (iNOS), and heat shock protein-70 (Hsp70). The blood brain barrier (BBB) was visibly intact and no ceria was seen in the brain cells. Ceria elevated PC and Hsp70 levels in hippocampus and cerebellum, while 3NT and iNOS levels were elevated in the cortex. Whereas glutathione peroxidase and catalase activity were decreased in the hippocampus, GR levels were decreased in the cortex, and GPx and catalase levels were decreased in the cerebellum. The GSH:GSSG ratio, an index of cellular redox status, was decreased in the hippocampus and cerebellum. The results are in accordance with the observation that this nanoscale material remains in this mammal model up to 30 days after its administration and the hypothesis that it exerts pro-oxidant effects on the brain without crossing the BBB. These results have important implications on the potential use of ceria ENM as therapeutic agents.


Assuntos
Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cério/administração & dosagem , Nanoestruturas/toxicidade , Aldeídos/metabolismo , Animais , Cério/sangue , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Masculino , Espectrometria de Massas , Microscopia Eletrônica , Óxido Nítrico Sintase Tipo II/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espectroscopia de Perda de Energia de Elétrons , Superóxido Dismutase/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
18.
Toxicol Sci ; 127(1): 256-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22367688

RESUMO

Nanoceria is used as a catalyst in diesel fuel, as an abrasive in printed circuit manufacture, and is being pursued as an antioxidant therapeutic. Our objective is to extend previous findings showing that there were no reductions of cerium in organs of the mononuclear phagocyte (reticuloendothelial) system up to 30 days after a single nanoscale ceria administration. An ~5% aqueous dispersion of citrate-stabilized 30 nm ceria, synthesized and characterized in-house, or vehicle, was iv infused into rats terminated 1, 7, 30, or 90 days later. Cageside observations were obtained daily, body weight weekly. Daily urinary and fecal cerium outputs were quantified for 2 weeks. Nine organs were weighed and samples collected from 14 tissues/organs/systems, blood and cerebrospinal fluid for cerium determination. Histology and oxidative stress were assessed. Less than 1% of the nanoceria was excreted in the first 2 weeks, 98% in feces. Body weight gain was initially impaired. Spleen weight was significantly increased in some ceria-treated groups, associated with abnormalities. Ceria was primarily retained in the spleen, liver, and bone marrow. There was little decrease of ceria in any tissue over the 90 days. Granulomas were observed in the liver. Time-dependent oxidative stress changes were seen in the liver and spleen. Nanoscale ceria was persistently retained by organs of the mononuclear phagocyte system, associated with adverse changes. The results support concern about the long-term fate and adverse effects of inert nanoscale metal oxides that distribute throughout the body, are persistently retained, and produce adverse changes.


Assuntos
Cério/farmacocinética , Cério/toxicidade , Nanoestruturas/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Granuloma/induzido quimicamente , Granuloma/patologia , Infusões Intravenosas , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Taxa de Depuração Metabólica , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Aumento de Peso/efeitos dos fármacos
19.
Nanomedicine (Lond) ; 7(1): 95-110, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22191779

RESUMO

AIMS: Characterize different sized ceria-engineered nanomaterial (ENM) distribution in, and clearance from, blood (compared to the cerium ion) following intravenous infusion. MATERIALS & METHODS: Cerium (Ce) was quantified in whole blood, serum and clot (the formed elements) up to 720 h. RESULTS: Traditional pharmacokinetic modeling showed best fit for 5 nm ceria ENM and the cerium ion. Ceria ENMs larger than 5 nm were rapidly cleared from blood. After initially declining, whole blood 15 and 30 nm ceria increased (results that have not been well-described by traditional pharmacokinetic modeling). The cerium ion and 5 and 55 nm ceria did not preferentially distribute into serum or clot, a mixture of cubic and rod shaped ceria was predominantly in the clot, and 15 and 30 nm ceria migrated into the clot over 4 h. CONCLUSION: Reticuloendothelial organs may not readily recognize five nm ceria. Increased ceria distribution into the clot over time may be due to opsonization. Traditional pharmacokinetic analysis was not very informative. Ceria ENM pharmacokinetics are quite different from the cerium ion.


Assuntos
Cério/sangue , Hidróxidos/sangue , Nanopartículas/análise , Nanopartículas/ultraestrutura , Animais , Coagulação Sanguínea , Cério/química , Meia-Vida , Hidróxidos/síntese química , Hidróxidos/química , Íons/sangue , Íons/farmacocinética , Cinética , Masculino , Taxa de Depuração Metabólica , Nanopartículas/química , Nanotubos/química , Nanotubos/ultraestrutura , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Soro
20.
Toxicol Sci ; 116(2): 562-76, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20457660

RESUMO

Engineered nanoscale ceria is used as a diesel fuel catalyst. Little is known about its mammalian central nervous system effects. The objective of this paper is to characterize the biodistribution of a 5-nm citrate-stabilized ceria dispersion from blood into brain and its pro- or antioxidant effects. An approximately 4% aqueous ceria dispersion was iv infused into rats (0, 100, and up to 250 mg/kg), which were terminated after 1 or 20 h. Ceria concentration, localization, and chemical speciation in the brain were assessed by inductively coupled plasma mass spectrometry, light and electron microscopy (EM), and electron energy loss spectroscopy (EELS). Pro- or antioxidative stress effects were assessed as protein carbonyls, 3-nitrotyrosine, and protein-bound 4-hydroxy-2-trans-nonenal in hippocampus, cortex, and cerebellum. Glutathione reductase, glutathione peroxidase, manganese superoxide dismutase, and catalase levels and activities were measured in hippocampus. Catalase levels and activities were also measured in cortex and cerebellum. Na fluorescein and horseradish peroxidase (HRP) were given iv as blood-brain barrier (BBB) integrity markers. Mortality was seen after administration of 175-250 mg ceria/kg. Twenty hours after infusion of 100 mg ceria/kg, brain HRP was marginally elevated. EM and EELS revealed mixed Ce(III) and Ce(IV) valence in the freshly synthesized ceria in vitro and in ceria agglomerates in the brain vascular compartment. Ceria was not seen in microvascular endothelial or brain cells. Ceria elevated catalase levels at 1 h and increased catalase activity at 20 h in hippocampus and decreased catalase activity at 1 h in cerebellum. Compared with a previously studied approximately 30-nm ceria, this ceria was more toxic, was not seen in the brain, and produced little oxidative stress effect to the hippocampus and cerebellum. The results are contrary to the hypothesis that a smaller engineered nanomaterial would more readily permeate the BBB.


Assuntos
Encéfalo/metabolismo , Cério/toxicidade , Nanoestruturas/toxicidade , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Catalase/análise , Cério/farmacocinética , Concentração de Íons de Hidrogênio , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...