Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomark Insights ; 6: 7-16, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21461292

RESUMO

Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation will identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. Microarray data analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide. The expression of 4 up-regulated genes and 1 down-regulated gene were confirmed by qRT-PCR. The up-regulated genes were AKR1C3 (Aldo-Keto Reductase family 1, member C3), IGFL1 (Insulin Growth Factor-Like family member 1), IL1R2 (Interleukin 1 Receptor, type 2), and TNFSF18 (Tumor Necrosis Factor [ligand] SuperFamily, member 18) and down-regulated gene was RGS2 (Regulator of G-protein Signaling 2). The observed over expression of TNFSF18 (167 fold) coupled with moderate expression of IGFL1 (3.1 fold), IL1R2 (5.9 fold) and AKR1C3 (9.2 fold) with a decreased RGS2 (2.0 fold) suggests that chronic arsenic exposure could produce sustained levels of TNF with modulation by an IL-1 analogue resulting in chronic immunologic insult. A concomitant decrease in growth inhibiting gene (RGS2) and increase in AKR1C3 may contribute to chronic inflammation leading to metaplasia, which may eventually lead to carcinogenicity in the skin keratinocytes. Also, increased expression of IGFL1 may trigger cancer development and progression in HaCaT keratinocytes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-22253543

RESUMO

BACKGROUND: Arsenic is a ubiquitous environmental toxicant, and abnormalities of the skin are the most common outcomes of long-term, low-dose, chronic arsenic exposure. If the balance between keratinocyte proliferation, differentiation, and death is perturbed, pathologic changes of the epidermis may result, including psoriasis, atopic dermatitis, and certain forms of ichthyosis. Therefore, research investigations using in vitro human epidermal cells could help elucidate cellular and molecular processes in keratinocytes affected by arsenic. Data from such investigations could also provide the basis for developing cosmetic intervention for skin diseases caused by arsenic. METHODS: The viability of HaCaT keratinocyte cultures with or without prior exposure to low-dose arsenic trioxide was compared for varying concentrations of arsenic trioxide over a time course of 14 days because in untreated control cultures, approximately 2 weeks is required to complete cell differentiation. Long-term cultures were established by culturing HaCaT cells on collagen IV, and cells were subsequently exposed to 0 parts per million (ppm), 1 ppm, 5 ppm, 7.5 ppm, 10 ppm, and 15 ppm of arsenic trioxide. The percentages of viable cells as well as DNA damage after exposure were determined on Day 2, Day 5, Day 8, and Day 14. RESULTS: Using both statistical and visual analytics approaches for data analysis, we have observed a biphasic response at a 5 ppm dose with cell viability peaking on Day 8 in both chronic and acute exposures. Further, a low dose of 1 ppm arsenic trioxide enhanced HaCaT keratinocyte proliferation, whereas doses above 7.5 ppm inhibited growth. CONCLUSION: The time course profiling of arsenic trioxide cytotoxicity using long-term HaCaT keratinocyte cultures presents an approach to modeling the human epidermal cellular responses to varying doses of arsenic trioxide treatment or exposure. A low dose of arsenic trioxide appears to aid cell growth but concomitantly disrupts the DNA transcription process.

4.
Bioinform Biol Insights ; 4: 99-111, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20981267

RESUMO

Arsenic is a toxic metalloid that causes skin cancer and binds to cysteine residues-a property that could be used to infer arsenic responsiveness of a target protein. Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) result in amino acid substitutions and may alter arsenic binding with cysteine residues. Thus, the objective of this investigation was to identify and analyze nsSNPs that lead to substitutions to or from cysteine residues as an indication of increased or decreased arsenic responsiveness. We hypothesize that integration of data on molecular impacts of nsSNPs and arsenic-gene relationships will identify nsSNPs that could serve as arsenic responsiveness markers. We have analyzed functional and structural impacts data for 5,811 nsSNPs linked to 1,224 arsenic-annotated genes. In addition to the identified candidate nsSNPs for increased or reduced arsenic responsiveness, we observed i) a nsSNP that results in the breakage of a disulfide bond, as candidate marker for reduced arsenic responsiveness of KLK7, a secreted serine protease participate in normal shedding of the skin; and ii) 6 pairs of vicinal cysteines in KLK7 protein that could be binding sites for arsenic. In summary, our analysis identified non-synonymous SNPs that could be used to evaluate responsiveness of a protein target to arsenic. In particular, an epidermal expressed serine protease with crucial function in normal skin physiology was prioritized on the basis of abundance of vicinal cysteines for further research on arsenic-induced keratinocyte carcinogenesis.

5.
Met Ions Biol Med ; 10: 458-462, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21603592

RESUMO

Arsenic is a heavy metal that exhibits a high degree of toxicity to various organ systems. In humans, this compound is associated with an increase risk of skin cancer, and may cause cancers of the lung, liver, bladder, kidney, and colon. The mechanism of arsenic-related carcinogenicity remains to be elucidated. Hence, the aim of the present study was to investigate the cytotoxic effects of arsenic trioxide (As(2)O(3)) on adenocarcinoma colorectal cancer (HT-29) cells using the MTT [3-(4,5 dimethylthiazoyl-2-yl)-2,5- diphenyltetrazolium bromide] assay for cell viability. To achieve this objective, HT-29 cells were cultured and exposed to various doses (0, 2, 4, 6, 8, 10, 12, and 14 µg/ml) of arsenic trioxide for 24 h, 48 h, and 72 h respectively, and subsequently assessed for viability following a standard MTT test protocol. Experimental data indicated that arsenic trioxide is cytotoxic to colon cancer cells showing LD(50) values of 9.8, 9.4 and 9.0 µg/ml upon 24, 48 and 72 h of exposure, respectively. There was a dose-dependent response with regard to As(2)O(3) toxicity in HT-29 cells. Although there was a reduction in LD(50) value with increasing exposure time, this decrease was not statistically significant.

6.
Blood ; 110(8): 2872-9, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17585053

RESUMO

Tolerogenic dendritic cells (DCs) may be valuable in transplantation for silencing immune reaction. Macrophage colony-stimulating factor (M-CSF)/IL-4 induces differentiation of cord blood (CB) monocytes into DCs (M-DCs) with tolerogenic phenotype/function. We assessed whether factors produced by tolerogenic DCs could modulate hematopoiesis. TGF-beta1 added to CB M-DC cultures induced bona fide DC morphology (TGF-M-DCs), similar to that of DCs generated with TGF-beta and granulocyte-macrophage colony-stimulating factor (GM-CSF)/IL-4 (TGF-GM-DCs). Of conditioned media (CM) produced from TGF-M-DCs, TGF-GM-DCs, M-DCs, and GM-DCs, TGF-M-DC CM was the only one that enhanced SCF, Flt3 ligand, and TPO expansion of myeloid progenitor cells ex vivo. This effect was blocked by neutralizing anti-M-CSF Ab, but protein analysis of CM suggested that M-CSF alone was not manifesting enhanced expansion of myeloid progenitors. LPS-stimulated TGF-M-DCs induced T-cell tolerance/anergy as effectively as M-DCs. TGF-M-DCs secreted significantly lower concentrations of progenitor cell inhibitory cytokines and were less potent in activating T cells than TGF-GM-DCs. Functional differences between TGF-M-DCs and TGF-GM-DCs included enhanced responses to LPS-induced ERK, JNK, and P38 activation in TGF-M-DCs and their immune suppressive-skewed cytokine release profiles. TGF-M-DCs appear unique among culture-generated DCs in their capability for silencing immunity while promoting expansion of myeloid progenitors, events that may be of therapeutic value.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Interleucina-4/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Células Progenitoras Mieloides/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Meios de Cultivo Condicionados , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Sangue Fetal/citologia , Sangue Fetal/efeitos dos fármacos , Humanos , Tolerância Imunológica , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/imunologia
7.
Exp Hematol ; 35(4 Suppl 1): 78-86, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17379091

RESUMO

OBJECTIVE: Interleukin (IL)-31 is a recently discovered helical cytokine. Its receptor consists of a ligand-specific IL-31 receptor (IL-31R) subunit and a receptor chain that is shared with Oncostatin M (OSM), called OSM-Rbeta. Because OSM-Rbeta-deficient animals have reduced hematopoietic progenitor cells (HPC) and OSM has effects on and is involved in homeostasis of HPC, we studied whether IL-31 and IL-31R play a role in hematopoiesis. MATERIALS AND METHODS: IL-31R(-/-) mice and their littermate wild-type (WT) controls were assessed for absolute numbers and cycling status of bone marrow and spleen HPC (colony-forming unit granulocyte macrophage [CFU-GM], burst-forming unit erythroid [BFU-E], colony-forming unit granulocyte, erythrocyte, macrophage, megakaryocyte). Recombinant IL-31 was evaluated for stimulation, enhancement, or inhibition of colony formation by HPC, and for survival-enhancing effects on HPC subjected to growth-factor withdrawal and delayed addition of grown factors. Hematopoietic stem cells (HSC) from WT and IL-31R(-/-) mice were compared for competitive repopulating capacity in lethally irradiated congenic mice. RESULTS: IL-31R(-/-) mice demonstrated significantly decreased absolute numbers and cycling status of immature subsets of HPC in bone marrow bone and spleen compared to WT mice. There were no significant differences in absolute numbers of more mature subsets of WT and IL-31R(-/-) bone marrow CFU-GM. WT but not IL-31R(-/-) bone marrow CFU-GM responded to synergistic stimulation by combinations of cytokines. While IL-31 had neither colony-stimulating, -enhancing, or -inhibiting activity for bone marrow HPC, it did enhance survival of these HPC in the context of delayed addition of growth factors. No significant differences were detected in competitive repopulating HSC activity between WT and IL-31R(-/-) bone marrow cells. CONCLUSION: IL-31R is involved in positive regulation of absolute numbers and cycling status of immature subsets of HPC in vivo. While IL-31 in vitro does not modulate proliferation of HPC, it does enhance their survival, which may contribute to effects on cycling and numbers of HPC in vivo. Under steady-state conditions, loss of IL-31R on HPC does not appear to influence the activity of competitive repopulating HSC. These results with HPC may be of future utility for manipulation of hematopoiesis in a preclinical setting.


Assuntos
Proliferação de Células , Células Precursoras Eritroides/metabolismo , Células Precursoras de Granulócitos/metabolismo , Hematopoese , Interleucinas/metabolismo , Receptores de Interleucina/metabolismo , Animais , Sobrevivência Celular , Células Precursoras Eritroides/citologia , Células Precursoras de Granulócitos/citologia , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Interleucinas/deficiência , Interleucinas/farmacologia , Camundongos , Camundongos Knockout
8.
Stem Cells ; 24(4): 850-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16339641

RESUMO

Stromal cell-derived factor (SDF)-1/CXCL12, released by murine embryonic stem (ES) cells, enhances survival, chemotaxis, and hematopoietic differentiation of murine ES cells. Conditioned medium (CM) from murine ES cells growing in the presence of leukemia inhibitory factor (LIF) was generated while the ES cells were in an undifferentiated Oct-4 expressing state. ES cell-CM enhanced survival of normal murine bone marrow myeloid progenitors (CFU-GM) subjected to delayed growth factor addition in vitro and decreased apoptosis of murine bone marrow c-kit(+)lin- cells. ES CM contained interleukin (IL)-1alpha, IL-10, IL-11, macrophage-colony stimulating factor (CSF), oncostatin M, stem cell factor, vascular endothelial growth factor, as well as a number of chemokines and other proteins, some of which are known to enhance survival/anti-apoptosis of progenitors. Irradiation of ES cells enhanced release of some proteins and decreased release of others. IL-6, FGF-9, and TNF-alpha, not detected prior to irradiation was found after ES cells were irradiated. ES cell CM also stimulated CFU-GM colony formation. Thus, undifferentiated murine ES cells growing in the presence of LIF produce/release a number of biologically active interleukins, CSFs, chemokines, and other growth modulatory proteins, results which may be of physiological and/or practical significance.


Assuntos
Citocinas/biossíntese , Substâncias de Crescimento/biossíntese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Totipotentes/citologia , Células-Tronco Totipotentes/metabolismo , Animais , Apoptose , Linhagem Celular , Sobrevivência Celular , Ensaio de Unidades Formadoras de Colônias , Meios de Cultivo Condicionados , Camundongos , Células-Tronco Totipotentes/efeitos da radiação
9.
J Exp Med ; 201(8): 1307-18, 2005 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-15837815

RESUMO

Improving approaches for hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is clinically important because increased numbers of these cells are needed for enhanced transplantation. Chemokine stromal cell derived factor-1 (also known as CXCL12) is believed to be involved in retention of HSCs and HPCs in bone marrow. AMD3100, a selective antagonist of CXCL12 that binds to its receptor, CXCR4, was evaluated in murine and human systems for mobilizing capacity, alone and in combination with granulocyte colony-stimulating factor (G-CSF). AMD3100 induced rapid mobilization of mouse and human HPCs and synergistically augmented G-CSF-induced mobilization of HPCs. AMD3100 also mobilized murine long-term repopulating (LTR) cells that engrafted primary and secondary lethally-irradiated mice, and human CD34(+) cells that can repopulate nonobese diabetic-severe combined immunodeficiency (SCID) mice. AMD3100 synergized with G-CSF to mobilize murine LTR cells and human SCID repopulating cells (SRCs). Human CD34(+) cells isolated after treatment with G-CSF plus AMD3100 expressed a phenotype that was characteristic of highly engrafting mouse HSCs. Synergy of AMD3100 and G-CSF in mobilization was due to enhanced numbers and perhaps other characteristics of the mobilized cells. These results support the hypothesis that the CXCL12-CXCR4 axis is involved in marrow retention of HSCs and HPCs, and demonstrate the clinical potential of AMD3100 for HSC mobilization.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Animais , Antígenos CD34 , Benzilaminas , Quimiocina CXCL12 , Quimiocinas CXC , Ensaio de Unidades Formadoras de Colônias , Ciclamos , Sinergismo Farmacológico , Humanos , Camundongos , Camundongos Endogâmicos , Camundongos SCID
10.
Int J Environ Res Public Health ; 2(1): 156-63, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16705813

RESUMO

In Eastern cultures, such as India, it is traditionally recommended that women but not men cover their heads while working in the scorching sun. The purpose of this pilot study was to determine whether there was any scientific basis for this cultural tradition. We examined the differential cytotoxic effects of ultraviolet A light (UVA) on an established T cell line treated with female and male sex hormones. CD4+ Jurkat T cells were plated in 96 well plates at 2 x 106 cells/ml and treated with 17beta-estradiol (EST) or testosterone (TE). These cells were irradiated by UVA light with an irradiance of 170 J/cm2 for 15min at a distance of 6 cm from the surface of the 96-well plate. Controls included cells not treated with hormones or UVA. The effects of EST and TE were investigated between 1 and 20 ng/mL. Cytotoxicity by fluorescein-diacetate staining and COMET assay generating single strand DNA cleavage, tail length and tail moment measurements were examined. The effect of estrogen (5ng/mL) on apoptosis and its mediators was further studied using DNA laddering and western blotting for bcl-2 and p53. We found that EST alone, without UVA, enhanced Jurkat T cell survival. However, EST exhibited a dose-related cytotoxicity in the presence of UVA; up to 28% at 20 ng/ml. TE did not alter UVA-induced cytotoxicity. Since TE did not alter cell viability in the presence of UVA further damaging studies were not performed. COMET assay demonstrated the harmful effects of EST in the presence of UVA while EST without UVA. had no significant effect on the nuclear damage. Apoptosis was not present as indicated by the absence of DNA laddering on agarose gel electrophoresis at 5ng/ml EST or TE +/- UVA. Western blot showed that estrogen down regulated bcl-2 independently of UVA radiation while p53 was down regulated in the presence of UVA treatment. EST and TE have differential effects on UVA-induced cytotoxicity in Jurkat T-lymphocyte which suggested that women may be more susceptible to the harmful effects of solar irradiation than men.


Assuntos
Estradiol/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/efeitos da radiação , Testosterona/farmacologia , Raios Ultravioleta , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ensaio Cometa , Dano ao DNA , Regulação para Baixo , Humanos , Células Jurkat , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Int J Environ Res Public Health ; 1(2): 83-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16696182

RESUMO

Arsenical keratosis and skin cancer are among the most common health effects associated with acute and chronic exposures to arsenic. This study examines the acute and chronic dose-responses of arsenic in established human cell lines using keratinocytes (HaCaT), melanocytes (CRL1675) and dendritic cells (THP-1 + A23187). Chronic conditions were established by treating the three cell lines with at least 8 passages in 0.2 microg/mL arsenic trioxide. Cytotoxicity was assessed using the fluorescein diacetate assay after 72 hrs of exposure. Single cell gel electrophoresis (Comet assay) was used to measure DNA damage. Acute exposure to arsenic had LD10 and LD25 values of 0.38 microg/mL and 3.0 microg/mL for keratinocytes; 0.19 microg/mL and 0.38 microg/mL for melanocytes; and 0.38 microg/mL and 0.75 microg/mL for dendritic cells. Cytotoxicity assays for chronically exposed cells resulted in LD10, and LD25 values of 0.4 microg/mL and 0.8 microg/mL for keratinocytes; 0.10 microg/mL and 0.20 microg/mL for melanocytes; and 0.10 microg/mL and 1.0 microg/mL for dendritic cells. The Comet assay showed that arsenic was highly genotoxic to the three cell lines. No significant differences (p > 0.05) in DNA cleavage were observed between acute and chronic exposures. In acute exposure arsenic genotoxicity was more severe with dendritic cells while melanocytes were more sensitive to arsenic cytotoxicity. Similarly, chronically exposed dendritic cells showed the maximum genotoxic damage while melanocytes were more sensitive to arsenic cytotoxicity. In conclusion, this research shows that arsenic is dermatotoxic, showing a high degree of genotoxicity and cytotoxicity to skin cells.


Assuntos
Células Dendríticas/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Óxidos/toxicidade , Animais , Trióxido de Arsênio , Arsenicais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Ensaio Cometa , Células Dendríticas/patologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Poluentes Ambientais/toxicidade , Queratinócitos/patologia , Melanócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...