Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 17(11): 1465-75, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19913481

RESUMO

The M16 family of zinc peptidases comprises a pair of homologous domains that form two halves of a "clam-shell" surrounding the active site. The M16A and M16C subfamilies form one class ("peptidasomes"): they degrade 30-70 residue peptides, and adopt both open and closed conformations. The eukaryotic M16B subfamily forms a second class ("processing proteases"): they adopt a single partly-open conformation that enables them to cleave signal sequences from larger proteins. Here, we report the solution and crystal structures of a prokaryotic M16B peptidase, and demonstrate that it has features of both classes: thus, it forms stable "open" homodimers in solution that resemble the processing proteases; but the clam-shell closes upon binding substrate, a feature of the M16A/C peptidasomes. Moreover, clam-shell closure is required for proteolytic activity. We predict that other prokaryotic M16B family members will form dimeric peptidasomes, and propose a model for the evolution of the M16 family.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Metaloendopeptidases/química , Modelos Moleculares , Conformação Proteica , Sequência de Aminoácidos , Sequência de Bases , Biologia Computacional , Cristalografia , Dimerização , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Zinco/metabolismo
2.
Nucleic Acids Res ; 37(Database issue): D611-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18842634

RESUMO

The Proteolysis MAP (PMAP, http://www.proteolysis.org) is a user-friendly website intended to aid the scientific community in reasoning about proteolytic networks and pathways. PMAP is comprised of five databases, linked together in one environment. The foundation databases, ProteaseDB and SubstrateDB, are driven by an automated annotation pipeline that generates dynamic 'Molecule Pages', rich in molecular information. PMAP also contains two community annotated databases focused on function; CutDB has information on more than 5000 proteolytic events, and ProfileDB is dedicated to information of the substrate recognition specificity of proteases. Together, the content within these four databases will ultimately feed PathwayDB, which will be comprised of known pathways whose function can be dynamically modeled in a rule-based manner, and hypothetical pathways suggested by semi-automated culling of the literature. A Protease Toolkit is also available for the analysis of proteases and proteolysis. Here, we describe how the databases of PMAP can be used to foster understanding of proteolytic pathways, and equally as significant, to reason about proteolysis.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases/química , Humanos , Redes e Vias Metabólicas , Peptídeo Hidrolases/metabolismo , Proteínas/química , Proteínas/metabolismo , Especificidade por Substrato , Integração de Sistemas
3.
J Bone Miner Res ; 23(6): 777-87, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18086009

RESUMO

INTRODUCTION: Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5'-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6-dependent seizures. There is no established medical treatment. MATERIALS AND METHODS: Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2-/-), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, microCT, and histomorphometry. RESULTS: Akp2-/- mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. CONCLUSIONS: Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2-/- mice.


Assuntos
Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/uso terapêutico , Terapia Biológica , Hipofosfatasia/tratamento farmacológico , Hipofosfatasia/enzimologia , Fosfatase Alcalina/deficiência , Fosfatase Alcalina/farmacocinética , Animais , Humanos , Hipofosfatasia/diagnóstico por imagem , Hipofosfatasia/genética , Camundongos , Camundongos Knockout , Radiografia , Fatores de Tempo
4.
Nucleic Acids Res ; 35(Database issue): D546-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17142225

RESUMO

Beyond the well-known role of proteolytic machinery in protein degradation and turnover, many specialized proteases play a key role in various regulatory processes. Thousands of highly specific proteolytic events are associated with normal and pathological conditions, including bacterial and viral infections. However, the information about individual proteolytic events is dispersed over multiple publications and is not easily available for large-scale analysis. CutDB is one of the first systematic efforts to build an easily accessible collection of documented proteolytic events for natural proteins in vivo or in vitro. A CutDB entry is defined by a unique combination of these three attributes: protease, protein substrate and cleavage site. Currently, CutDB integrates 3070 proteolytic events for 470 different proteases captured from public archives (such as MEROPS and HPRD) and publications. CutDB supports various types of data searches and displays, including clickable network diagrams. Most importantly, CutDB is a community annotation resource based on a Wikipedia approach, providing a convenient user interface to input new data online. A recent contribution of 568 proteolytic events by several experts in the field of matrix metallopeptidases suggests that this approach will significantly accelerate the development of CutDB content. CutDB is publicly available at http://cutdb.burnham.org.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases/metabolismo , Animais , Humanos , Internet , Especificidade por Substrato , Interface Usuário-Computador
5.
J Immunol Methods ; 269(1-2): 99-110, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12379355

RESUMO

Strategies for expanding the catalytic scope of antibodies include the incorporation of inorganic or organic cofactors into their binding sites. An obvious choice is pyridoxal-5'-phosphate (PLP), which is probably the most versatile organic cofactor of enzymes. Monoclonal antibodies against the hapten N(alpha)-(5'-phosphopyridoxyl)-L-lysine, a stable analog of the covalent coenzyme-substrate adducts were screened by a competition ELISA for binding of the PLP-amino acid Schiff base adduct. The Schiff base with its C4'-N alpha double bond is, in contrast to the hapten, a planar compound and is an obligatory intermediate in all PLP-dependent reactions of amino acids. This highly discriminating screening step eliminated all but 5 of 24 hapten-binding antibodies. The five remaining antibodies were tested for catalysis of the PLP-dependent alpha,beta-elimination reaction of beta-chloroalanine. Antibody 15A9 complied with this selection criterion and catalyzed in addition the cofactor-dependent transamination reaction of hydrophobic D-amino acids and oxo acids (k(cat)'=0.42 min(-1) with D-alanine at 25 degrees C). Homology modeling together with alanine scanning yielded a 3D model of Fab 15A9. The striking analogy between antibody 15A9 and PLP-dependent enzymes includes the following features: (1) The binding sites accommodate the planar coenzyme-amino acid adduct. (2) The bond at C alpha to be broken lies together with the C alpha-N bond in a plane orthogonal to the plane of coenzyme and imine bond. (3) The alpha-carboxylate group of the substrate is bound by an arginine residue. (4) The coenzyme-substrate adduct assumes a cisoid conformation. (5) PLP markedly contributes to catalytic efficiency, being a 10(4) times more efficient amino group acceptor than pyruvate. The protein moiety, however, ensures reaction as well as substrate specificity, and further accelerates the reaction (in 15A9 k(cat (Ab x PLP))'/k(cat (PLP))'=5 x 10(3)). The analogies of antibody 15A9 with PLP-dependent enzymes suggest that the selection criteria in the screening protocol were similar to those that have been operative in the molecular evolution of enzyme-assisted pyridoxal catalysis.


Assuntos
Anticorpos Catalíticos/metabolismo , Haptenos/metabolismo , Fosfato de Piridoxal/metabolismo , Aminoácidos/metabolismo , Anticorpos Catalíticos/química , Catálise , Haptenos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...