Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336335

RESUMO

Artificial Intelligence (AI) in Cyber-Physical Systems allows machine learning inference on acquired data with ever greater accuracy, thanks to models trained with massive amounts of information generated by Internet of Things devices. Edge Intelligence is increasingly adopted to execute inference on data at the border of local networks, exploiting models trained in the Cloud. However, the training tasks on Edge nodes are not supported yet with flexible dynamic migration between Edge and Cloud. This paper proposes a Cloud-Edge AI microservice architecture, based on Osmotic Computing principles. Notable features include: (i) containerized architecture enabling training and inference on the Edge, Cloud, or both, exploiting computational resources opportunistically to reach the best prediction accuracy; and (ii) microservice encapsulation of each architectural module, allowing a direct mapping with Commercial-Off-The-Shelf (COTS) components. Grounding on the proposed architecture: (i) a prototype has been realized with commodity hardware leveraging open-source software technologies; and (ii) it has been then used in a small-scale intelligent manufacturing case study, carrying out experiments. The obtained results validate the feasibility and key benefits of the approach.


Assuntos
Inteligência Artificial , Software , Inteligência , Osmose
2.
Sensors (Basel) ; 20(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878204

RESUMO

The benefits of automatic identification technologies in healthcare have been largely recognized. Nevertheless, unlocking their potential to support the most knowledge-intensive medical tasks requires to go beyond mere item identification. This paper presents an innovative Decision Support System (DSS), based on a semantic enhancement of Near Field Communication (NFC) standard. Annotated descriptions of medications and patient's case history are stored in NFC transponders and used to help caregivers providing the right therapy. The proposed framework includes a lightweight reasoning engine to infer possible incompatibilities in treatment, suggesting substitute therapies. A working prototype is presented in a rheumatology case study and preliminary performance tests are reported. The approach is independent from back-end infrastructures. The proposed DSS framework is validated in a limited but realistic case study, and performance evaluation of the prototype supports its practical feasibility. Automated reasoning on knowledge fragments extracted via NFC enables effective decision support not only in hospital centers, but also in pervasive IoT-based healthcare contexts such as first aid, ambulance transport, rehabilitation facilities and home care.


Assuntos
Técnicas de Apoio para a Decisão , Serviços de Assistência Domiciliar , Bases de Conhecimento , Comunicação , Atenção à Saúde , Humanos , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...