Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874705

RESUMO

Aortic valve (AV) disease is a common valvular lesion in the United States, present in about 5% of the population at age 65 with increasing prevalence with advancing age. While current replacement heart valves have extended life for many, their long-term use remains hampered by limited durability. Non-surgical treatments for AV disease do not yet exist, in large part because our understanding of AV disease etiology remains incomplete. The direct study of human AV disease remains hampered by the fact that clinical data is only available at the time of treatment, where the disease is at or near end stage and any time progression information has been lost. Large animal models, long used to assess replacement AV devices, cannot yet reproduce AV disease processes. As an important alternative mouse animal models are attractive for their ability to perform genetic studies of the AV disease processes and test potential pharmaceutical treatments. While mouse models have been used for cellular and genetic studies of AV disease, their small size and fast heart rates have hindered their use for tissue- and organ-level studies. We have recently developed a novel ex vivo micro-CT-based methodology to 3D reconstruct murine heart valves and estimate the leaflet mechanical behaviors (Feng et al. in Sci Rep 13(1):12852, 2023). In the present study, we extended our approach to 3D reconstruction of the in vivo functional murine AV (mAV) geometry using high-frequency four-dimensional ultrasound (4DUS). From the resulting 4DUS images we digitized the mAV mid-surface coordinates in the fully closed and fully opened states. We then utilized matched high-resolution µCT images of ex vivo mouse mAV to develop mAV NURBS-based geometric model. We then fitted the mAV geometric model to the in vivo data to reconstruct the 3D in vivo mAV geometry in the closed and open states in n = 3 mAV. Results demonstrated high fidelity geometric results. To our knowledge, this is the first time such reconstruction was ever achieved. This robust assessment of in vivo mAV leaflet kinematics in 3D opens up the possibility for longitudinal characterization of murine models that develop aortic valve disease.

2.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328245

RESUMO

The brain has the remarkable ability to learn and guide the performance of complex tasks. Decades of lesion studies suggest that different brain regions perform specialized functions in support of complex behaviors1-3. Yet recent large-scale studies of neural activity reveal similar patterns of activity and encoding distributed widely throughout the brain4-6. How these distributed patterns of activity and encoding are compatible with regional specialization of brain function remains unclear. Two frontal brain regions, the dorsal medial prefrontal cortex (dmPFC) and orbitofrontal cortex (OFC), are a paradigm of this conundrum. In the setting complex behaviors, the dmPFC is necessary for choosing optimal actions2,7,8, whereas the OFC is necessary for waiting for3,9 and learning from2,7,9-12 the outcomes of those actions. Yet both dmPFC and OFC encode both choice- and outcome-related quantities13-20. Here we show that while ensembles of neurons in the dmPFC and OFC of rats encode similar elements of a cognitive task with similar patterns of activity, the two regions differ in when that coding is consistent across trials ("reliable"). In line with the known critical functions of each region, dmPFC activity is more reliable when animals are making choices and less reliable preceding outcomes, whereas OFC activity shows the opposite pattern. Our findings identify the dynamic reliability of neural population codes as a mechanism whereby different brain regions may support distinct cognitive functions despite exhibiting similar patterns of activity and encoding similar quantities.

3.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38328074

RESUMO

Scientific progress depends on reliable and reproducible results. Progress can also be accelerated when data are shared and re-analyzed to address new questions. Current approaches to storing and analyzing neural data typically involve bespoke formats and software that make replication, as well as the subsequent reuse of data, difficult if not impossible. To address these challenges, we created Spyglass, an open-source software framework that enables reproducible analyses and sharing of data and both intermediate and final results within and across labs. Spyglass uses the Neurodata Without Borders (NWB) standard and includes pipelines for several core analyses in neuroscience, including spectral filtering, spike sorting, pose tracking, and neural decoding. It can be easily extended to apply both existing and newly developed pipelines to datasets from multiple sources. We demonstrate these features in the context of a cross-laboratory replication by applying advanced state space decoding algorithms to publicly available data. New users can try out Spyglass on a Jupyter Hub hosted by HHMI and 2i2c: https://spyglass.hhmi.2i2c.cloud/.

4.
Am J Physiol Heart Circ Physiol ; 325(2): H293-H310, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326999

RESUMO

The comprehensive characterization of cardiac structure and function is critical to better understanding various murine models of cardiac disease. We demonstrate here a multimodal analysis approach using high-frequency four-dimensional ultrasound (4DUS) imaging and proteomics to explore the relationship between regional function and tissue composition in a murine model of metabolic cardiomyopathy (Nkx2-5183P/+). The presented 4DUS analysis outlines a novel approach to mapping both circumferential and longitudinal strain profiles through a standardized framework. We then demonstrate how this approach allows for spatiotemporal comparisons of cardiac function and improved localization of regional left ventricular dysfunction. Guided by observed trends in regional dysfunction, our targeted Ingenuity Pathway Analysis (IPA) results highlight metabolic dysregulation in the Nkx2-5183P/+ model, including altered mitochondrial function and energy metabolism (i.e., oxidative phosphorylation and fatty acid/lipid handling). Finally, we present a combined 4DUS-proteomics z-score-based analysis that highlights IPA canonical pathways showing strong linear relationships with 4DUS biomarkers of regional cardiac dysfunction. The presented multimodal analysis methods aim to help future studies more comprehensively assess regional structure-function relationships in other preclinical models of cardiomyopathy.NEW & NOTEWORTHY A multimodal approach using both four-dimensional ultrasound (4DUS) and regional proteomics can help enhance our investigations of murine cardiomyopathy models. We present unique 4DUS-derived strain maps that provide a framework for both cross-sectional and longitudinal analysis of spatiotemporal cardiac function. We further detail and demonstrate an innovative 4DUS-proteomics z-score-based linear regression method, aimed at characterizing relationships between regional cardiac dysfunction and underlying mechanisms of disease.


Assuntos
Cardiomiopatias , Disfunção Ventricular Esquerda , Masculino , Animais , Camundongos , Estudos Transversais , Proteômica , Ultrassonografia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Cardiomiopatias/diagnóstico por imagem , Proteína Homeobox Nkx-2.5
5.
J Appl Physiol (1985) ; 130(2): 355-368, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33180645

RESUMO

Heat therapy (HT) has emerged as a potential adjunctive therapy to alleviate the symptoms of peripheral artery disease (PAD), but the mechanisms underlying the positive effects of this treatment modality remain undefined. Using a model of diet-induced obesity (DIO) and ischemia-induced muscle damage, we tested the hypothesis that HT would alter body composition, promote vascular growth and mitochondrial biogenesis, and improve skeletal muscle function. Male DIO C57Bl/6J mice underwent bilateral ligation of the femoral artery and were randomly allocated to receive HT or a control intervention for 30 min daily over 3 wk. When compared with a group of lean, sham-operated animals, ligated DIO mice exhibited increases in body and fat masses, exercise intolerance, and contractile dysfunction of the isolated soleus (SOL) and extensor digitorum longus (EDL) muscles. Repeated HT averted an increase in body mass induced by high-fat feeding due to reduced fat accrual. Fat mass was ∼25% and 29% lower in the HT group relative to controls after 2 and 3 wk of treatment, respectively. Muscle mass relative to body mass and maximal absolute force of the EDL, but not SOL, were higher in animals exposed to HT. There were no group differences in skeletal muscle capillarization, the expression of angiogenic factors, mitochondrial content, and the diameter of the gracilis arteries. These findings indicate that HT reduces diet-induced fat accumulation and rescues skeletal muscle contractile dysfunction. This practical treatment may prove useful for diabetic and obese PAD patients who are unable to undergo conventional exercise regimens.NEW & NOTEWORTHY The epidemic of obesity-related dyslipidemia and diabetes is a central cause of the increasing burden of peripheral artery disease (PAD), but few accessible therapies exist to mitigate the metabolic and functional abnormalities in these patients. We report that daily exposure to heat therapy (HT) in the form of lower-body immersion in water heated to 39 °C for 3 weeks attenuates fat accumulation and weight gain, and improves muscle strength in obese mice with femoral artery occlusion.


Assuntos
Temperatura Alta , Isquemia , Animais , Composição Corporal , Membro Posterior , Isquemia/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...