Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(15): 7168-7178, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32216316

RESUMO

Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A2BB'O6 compounds. The A-site atomic splitting (∼1.0-1.2 Šbetween the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (∼0.2 Šatomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.

2.
npj Quantum Inf ; 5(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-38868452

RESUMO

Rational design of technologically important exotic perovskites is hampered by the insufficient geometrical descriptors and costly and extremely high-pressure synthesis, while the big-data driven compositional identification and precise prediction entangles full understanding of the possible polymorphs and complicated multidimensional calculations of the chemical and thermodynamic parameter space. Here we present a rapid systematic data-mining-driven approach to design exotic perovskites in a high-throughput and discovery speed of the A 2 BB'O6 family as exemplified in A 3TeO6. The magnetoelectric polar magnet Co3TeO6, which is theoretically recognized and experimentally realized at 5 GPa from the six possible polymorphs, undergoes two magnetic transitions at 24 and 58 K and exhibits helical spin structure accompanied by magnetoelastic and magnetoelectric coupling. We expect the applied approach will accelerate the systematic and rapid discovery of new exotic perovskites in a high-throughput manner and can be extended to arbitrary applications in other families.

3.
Inorg Chem ; 58(23): 15953-15961, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724852

RESUMO

The corundum-related oxides Mn2ScNbO6 and Mn2ScTaO6 were synthesized at high pressure and high temperature (6 GPa and 1475 K). Analysis of the synchrotron powder X-ray diffraction shows that Mn2ScNbO6 and Mn2ScTaO6 crystallize in Ni3TeO6-type noncentrosymmetric crystal structures with space group R3. The asymmetric crystal structure was confirmed by second harmonic generation measurement. X-ray absorption near-edge spectroscopies indicate formal valence states of Mn2+2Sc3+Nb5+O6 and Mn2+2Sc3+Ta5+O6, also supported by the calculated bond valence sums. Both samples are electrically insulating. Magnetic measurements indicate that Mn2ScNbO6 and Mn2ScTaO6 order ferrimagnetically at 53 and 50 K, respectively, and Mn2ScTaO6 is found to have a field-induced magnetic transition.

4.
Sci Rep ; 9(1): 4391, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867516

RESUMO

LiCuVO4 is a model system of a 1D spin-1/2 chain that enters a planar spin-spiral ground state below its Néel temperature of 2.4 K due to competing nearest and next nearest neighbor interactions. The spin-spiral state is multiferroic with an electric polarization along the a axis which has been proposed to be caused purely by the spin supercurrent mechanism. With external magnetic fields in c direction TN can be suppressed down to 0 K at 7.4 T. Here we report dynamical measurements of the polarization from P(E)-hysteresis loops, magnetic field dependent pyro-current and non-linear dielectric spectroscopy as well as thermal expansion and magnetostriction measurements at very low temperatures. The multiferroic transition is accompanied by strong anomalies in the thermal expansion and magnetostriction coefficients and we find slow switching times of electric domain reversal. Both observations suggest a sizable magnetoelastic coupling in LiCuVO4. By analyzing the non-linear polarization dynamics we derive domain sizes in the nm range that are probably caused by Li defects.

5.
Inorg Chem ; 58(2): 1599-1606, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30608645

RESUMO

Li2GeTeO6 prepared at ambient pressure adopts the corundum derivative ordered ilmenite structure (rhombohedral R3). When heated at 1073 K and 3-5 GPa, the as-made Li2GeTeO6 can convert into a LiSbO3-derived Li2TiTeO6-type phase (orthorhombic Pnn2), which is the third LiSbO3-derived double A2BB'O6 phase in addition to Li2TiTeO6 and Li2SnTeO6. This Pnn2 Li2GeTeO6 phase spontaneously reverts to the R3 phase if annealed up to 1023 K at ambient pressure. Although the crystal structural analyses and second harmonic generation measurements clearly demonstrate the polar nature of both the R3 and Pnn2 phases, P( E) and dielectric measurements do not show any convincing ferroelectric response. Given the large estimated spontaneous polarization (17 and 80 µC/cm2), the absence of ferroelectric behavior could be attributed to the random domain distribution and leakage due to Li-ion migration.

6.
Nat Commun ; 8(1): 2037, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229914

RESUMO

Double corundum-related polar magnets are promising materials for multiferroic and magnetoelectric applications in spintronics. However, their design and synthesis is a challenge, and magnetoelectric coupling has only been observed in Ni3TeO6 among the known double corundum compounds to date. Here we address the high-pressure synthesis of a new polar and antiferromagnetic corundum derivative Mn2MnWO6, which adopts the Ni3TeO6-type structure with low temperature first-order field-induced metamagnetic phase transitions (T N = 58 K) and high spontaneous polarization (~ 63.3 µC·cm-2). The magnetostriction-polarization coupling in Mn2MnWO6 is evidenced by second harmonic generation effect, and corroborated by magnetic-field-dependent pyroresponse behavior, which together with the magnetic-field-dependent polarization and dielectric measurements, qualitatively indicate magnetoelectric coupling. Piezoresponse force microscopy imaging and spectroscopy studies on Mn2MnWO6 show switchable polarization, which motivates further exploration on magnetoelectric effect in single crystal/thin film specimens.

8.
Adv Mater ; 27(13): 2177-81, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25677612

RESUMO

Mn(2+)2 Fe(2+)W(6+)O6 , a new polar magnetic phase, adopts the corundum-derived Ni3TeO6 -type structure with large spontaneous polarization (PS) of 67.8 µC cm(-2), complex antiferromagnetic order below ≈75 K, and field-induced first-order transition to a ferrimagnetic phase below ≈30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.

9.
Nat Commun ; 5: 4853, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25188290

RESUMO

Competing interactions in the so-called spin-ice compounds stabilize a frustrated ground state with finite zero-point entropy and, interestingly, emergent magnetic monopole excitations. The properties of these monopoles are at the focus of recent research with particular emphasis on their quantum dynamics. It is predicted that each monopole also possesses an electric dipole moment, which allows to investigate their dynamics via the dielectric function ε(ν). Here we report on broadband spectroscopic measurements of ε(ν) in Dy2Ti2O7 down to temperatures of 200 mK with a specific focus on the critical end point present for a magnetic field along the crystallographic [111] direction. Clear critical signatures are revealed in the dielectric response when, similarly as in the liquid-gas transition, the density of monopoles changes in a critical manner. The dielectric relaxation time τ exhibits a critical speeding-up with a significant enhancement of 1/τ as the temperature is lowered towards the critical temperature. Besides demonstrating the magnetoelectric character of the emergent monopole excitations, our results corroborate the unique critical dynamics near the monopole condensation transition.

10.
Angew Chem Int Ed Engl ; 53(40): 10774-8, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25131837

RESUMO

Above-room-temperature polar magnets are of interest due to their practical applications in spintronics. Here we present a strategy to design high-temperature polar magnetic oxides in the corundum-derived A2BB'O6 family, exemplified by the non-centrosymmetric (R3) Ni3TeO6-type Mn(2+)2Fe(3+)Mo(5+)O6, which shows strong ferrimagnetic ordering with TC = 337 K and demonstrates structural polarization without any ions with (n-1)d(10)ns(0), d(0), or stereoactive lone-pair electrons. Density functional theory calculations confirm the experimental results and suggest that the energy of the magnetically ordered structure, based on the Ni3TeO6 prototype, is significantly lower than that of any related structure, and accounts for the spontaneous polarization (68 µC cm(-2)) and non-centrosymmetry confirmed directly by second harmonic generation. These results motivate new directions in the search for practical magnetoelectric/multiferroic materials.

11.
J Am Chem Soc ; 136(24): 8508-11, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24841411

RESUMO

Polar oxides are technically of great interest but difficult to prepare. Our recent discoveries predicted that polar oxides can be synthesized in the corundum-derivative A2BB'O6 family with unusually small cations at the A-site and a d(0) electron configuration ion at B'-site. When magnetic transition-metal ions are incorporated more interesting polar magnetic oxides can form. In this work we experimentally verified this prediction and prepared LiNbO3 (LN)-type polar magnetic Zn2FeTaO6 via high pressure and temperature synthesis. The crystal structure analysis indicates highly distorted ZnO6 and (Fe/Ta)O6 octahedra, and an estimated spontaneous polarization (PS) of ∼50 µC/cm(2) along the c-axis was obtained from point charge model calculations. Zn2Fe(3+)Ta(5+)O6 has a lower magnetic transition temperature (TN ∼ 22 K) than the Mn2FeTaO6 analogue but is less conductive. The dielectric and polarization measurements indicate a potentially switchable component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...