Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 727-743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009920

RESUMO

Poales are one of the most species-rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution. We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations. Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species-rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories. The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.


Assuntos
Ecossistema , Poaceae , Filogenia , Evolução Biológica
2.
Front Plant Sci ; 14: 1205511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426962

RESUMO

Understanding the spatial and temporal frameworks of species diversification is fundamental in evolutionary biology. Assessing the geographic origin and dispersal history of highly diverse lineages of rapid diversification can be hindered by the lack of appropriately sampled, resolved, and strongly supported phylogenetic contexts. The use of currently available cost-efficient sequencing strategies allows for the generation of a substantial amount of sequence data for dense taxonomic samplings, which together with well-curated geographic information and biogeographic models allow us to formally test the mode and tempo of dispersal events occurring in quick succession. Here, we assess the spatial and temporal frameworks for the origin and dispersal history of the expanded clade K, a highly diverse Tillandsia subgenus Tillandsia (Bromeliaceae, Poales) lineage hypothesized to have undergone a rapid radiation across the Neotropics. We assembled full plastomes from Hyb-Seq data for a dense taxon sampling of the expanded clade K plus a careful selection of outgroup species and used them to estimate a time- calibrated phylogenetic framework. This dated phylogenetic hypothesis was then used to perform biogeographic model tests and ancestral area reconstructions based on a comprehensive compilation of geographic information. The expanded clade K colonized North and Central America, specifically the Mexican transition zone and the Mesoamerican dominion, by long-distance dispersal from South America at least 4.86 Mya, when most of the Mexican highlands were already formed. Several dispersal events occurred subsequently northward to the southern Nearctic region, eastward to the Caribbean, and southward to the Pacific dominion during the last 2.8 Mya, a period characterized by pronounced climate fluctuations, derived from glacial-interglacial climate oscillations, and substantial volcanic activity, mainly in the Trans-Mexican Volcanic Belt. Our taxon sampling design allowed us to calibrate for the first time several nodes, not only within the expanded clade K focal group but also in other Tillandsioideae lineages. We expect that this dated phylogenetic framework will facilitate future macroevolutionary studies and provide reference age estimates to perform secondary calibrations for other Tillandsioideae lineages.

3.
Mol Phylogenet Evol ; 181: 107714, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708940

RESUMO

Anchored Hybrid Enrichment (AHE) is a tool for capturing orthologous regions of the nuclear genome shared in low or single copy across lineages. Despite the increasing number of studies using this method, its usefulness to estimate relationships at deeper taxonomic levels in plants has not been fully explored. Here we present a proof of concept about the performance of nuclear loci obtained with AHE to infer phylogenetic relationships and explore the use of gene sampling schemes to estimate divergence times in Asterales. We recovered low-copy nuclear loci using the AHE method from herbarium material and silica-preserved samples. Maximum likelihood, Bayesian inference, and coalescence approaches were used to reconstruct phylogenomic relationships. Dating analyses were conducted under a multispecies coalescent approach by jointly inferring species tree and divergence times with random gene sampling schemes and multiple calibrations. We recovered 403 low-copy nuclear loci for 63 species representing nine out of eleven families of Asterales. Phylogenetic hypotheses were congruent among the applied methods and previously published results. Analyses with concatenated datasets were strongly supported, but coalescence-based analyses showed low support for the phylogenetic position of families Argophyllaceae and Alseuosmiaceae. Estimated family ages were congruent among gene sampling schemes, with the mean age for Asterales around 130 Myr. Our study documents the usefulness of AHE for resolving phylogenetic relationships at deep phylogenetic levels in Asterales. Observed phylogenetic inconsistencies were possibly due to the non-inclusion of families Phellinceae and Pentaphragmataceae. Random gene sampling schemes produced consistent age estimates with coalescence and species tree relaxed clock approaches.


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Teorema de Bayes , Genoma , Núcleo Celular/genética
4.
Front Plant Sci ; 13: 924922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982706

RESUMO

Full plastome sequences for land plants have become readily accessible thanks to the development of Next Generation Sequencing (NGS) techniques and powerful bioinformatic tools. Despite this vast amount of genomic data, some lineages remain understudied. Full plastome sequences from the highly diverse (>1,500 spp.) subfamily Tillandsioideae (Bromeliaceae, Poales) have been published for only three (i.e., Guzmania, Tillandsia, and Vriesea) out of 22 currently recognized genera. Here, we focus on core Tillandsioideae, a clade within subfamily Tillandsioideae, and explore the contribution of individual plastid markers and data categories to inform deep divergences of a plastome phylogeny. We generated 37 high quality plastome assemblies and performed a comparative analysis in terms of plastome structure, size, gene content and order, GC content, as well as number and type of repeat motifs. Using the obtained phylogenetic context, we reconstructed the evolution of these plastome attributes and assessed if significant shifts on the evolutionary traits' rates have occurred in the evolution of the core Tillandsioideae. Our results agree with previously published phylogenetic hypotheses based on plastid data, providing stronger statistical support for some recalcitrant nodes. However, phylogenetic discordance with previously published nuclear marker-based hypotheses was found. Several plastid markers that have been consistently used to address phylogenetic relationships within Tillandsioideae were highly informative for the retrieved plastome phylogeny and further loci are here identified as promising additional markers for future studies. New lineage-specific plastome rearrangements were found to support recently adopted taxonomic groups, including large inversions, as well as expansions and contractions of the inverted repeats. Evolutionary trait rate shifts associated with changes in size and GC content of the plastome regions were found across the phylogeny of core Tillandsioideae.

5.
Front Plant Sci ; 13: 850521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498660

RESUMO

The economically important cotton and cacao family (Malvaceae sensu lato) have long been recognized as a monophyletic group. However, the relationships among some subfamilies are still unclear as discordant phylogenetic hypotheses keep arising when different sources of molecular data are analyzed. Phylogenetic discordance has previously been hypothesized to be the result of both introgression and incomplete lineage sorting (ILS), but the extent and source of discordance have not yet been evaluated in the context of loci derived from massive sequencing strategies and for a wide representation of the family. Furthermore, no formal methods have been applied to evaluate if the detected phylogenetic discordance among phylogenomic datasets influences phylogenetic dating estimates of the concordant relationships. The objective of this research was to generate a phylogenetic hypothesis of Malvaceae from nuclear genes, specifically we aimed to (1) investigate the presence of major discordance among hundreds of nuclear gene histories of Malvaceae; (2) evaluate the potential source of discordance; and (3) examine whether discordance and loci heterogeneity influence on time estimates of the origin and diversification of subfamilies. Our study is based on a comprehensive dataset representing 96 genera of the nine subfamilies and 268 nuclear loci. Both concatenated and coalescence-based approaches were followed for phylogenetic inference. Using branch lengths and topology, we located the placement of introgression events to directly evaluate whether discordance is due to introgression rather than ILS. To estimate divergence times, concordance and molecular rate were considered. We filtered loci based on congruence with the species tree and then obtained the molecular rate of each locus to distribute them into three different sets corresponding to shared molecular rate ranges. Bayesian dating was performed for each of the different sets of loci with the same parameters and calibrations. Phylogenomic discordance was detected between methods, as well as gene histories. At deep coalescent times, we found discordance in the position of five subclades probably due to ILS and a relatively small proportion of introgression. Divergence time estimation with each set of loci generated overlapping clade ages, indicating that, even with different molecular rate and gene histories, calibrations generally provide a strong prior.

6.
Front Plant Sci ; 12: 661522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267769

RESUMO

Background: Hydrangea section Cornidia consists of 26 currently accepted species and a yet undefined number of new species and erroneously synonymized taxa. This clade consists of (sub)tropical lianas occurring from northern Mexico to southern Chile and Argentina, and one species from Southeast Asia. Currently, no molecular phylogenetic hypothesis is available that includes more than a few species of this section. Hence, a resolved and well-sampled molecular phylogenetic hypothesis may help to enforce taxonomic decisions. In this study, we present a phylogenetic framework based on sequences from two low copy nuclear genes from a comprehensive taxon sampling of H. section Cornidia and a selection of outgroups. Our phylogenetic reconstructions prove the non-monophyly of the traditionally recognized subsections Monosegia and Polysegia and their corresponding series, Speciosae and Aphananthae, and Synstyleae and Chorystyleae, respectively. Three morphologically defined species were recovered with high support as monophyletic, namely, Hydrangea panamensis, Hydrangea serratifolia, and Hydrangea tarapotensis. However, statistical support for some shallow nodes did not allow to refute, with high support, the monophyly of several of the herein recognized species for which more than one individual could be analyzed. Based on the obtained phylogenetic framework, we reconstructed the evolution of selected reproductive characters. Hydrangea section Cornidia is the only genus section for which dioecism has been extensively documented. Our character reconstruction of sexual dimorphism shows that dioecism is the ancestral state in this section and that this was reversed to monoecy in Hydrangea seemannii and Hydrangea integrifolia. Character reconstruction for the enlarged marginal flowers recovered their presence as the ancestral character state in H. section Cornidia, although at least three internal lineages independently lost them; thus, losses were reconstructed to be more likely than gain. With respect to the flower color, more species exhibit white than red flowers, and white is reconstructed as the ancestral state. Cornidia also shows an unusual disjunct geographic distribution between Asia and Central Mesoamerica-South America, as it is not present in the USA and Canada. The origin of Cornidia is reconstructed to be the New World with higher probability, and the presence of one species in Asia is likely due to long-distance dispersal.

7.
PhytoKeys ; 171: 91-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584112

RESUMO

Hydrangea section Cornidia, currently consisting of 19 accepted taxa, occurs from Mexico to Chile and Argentina, with one species in southeast Asia. Its representatives are root-climbing lianas which may grow up to 60 m high in the tree canopy of temperate to (sub)tropical forests. Our extensive field work throughout its distribution area, study of herbarium specimens and ongoing molecular studies have resulted in the discovery of species new to science, as well as new insights into the circumscription of many taxa. We here present amended descriptions for seven Hydrangea species of Central and South America and discuss the taxonomical situation of two Colombian Hydrangeas, including an identification key, illustrations, and distribution maps. Field work was carried out in Costa Rica, Panama, Ecuador and Peru, including exploration in areas where the genus had not been collected before. These specimens and observations were complemented with the study of specimens of 41 herbaria of North, Central and South America, as well as Europe. Detailed morphological studies of all species were carried out, based on living plants in their natural habitat, as well as on dried specimens from our own collections and all available herbarium material. Type material was studied in detail for all species concerned. Based on an extensive number of morphological characters, combined with distribution patterns, phenological differences and ecological preferences, including molecular data in most cases, Hydrangea peruviana and H. oerstedii are clearly distinct taxa, as well as the other seven species mentioned here, which had been synonymized with either of these two species. The present study results in the recognition of 26 species in section Cornidia and exemplifies the urgent need for profound taxonomic studies in plants, as in many families we do not dispose of well-circumscribed units for conservation to mitigate the already occurring unprecedented loss of biodiversity.


ResumenHydrangea sección Cornidia, que actualmente consiste en 19 taxones aceptados, se distribuye desde México hasta Chile y Argentina, con una especie en el sureste asiático. Sus representantes son lianas trepadoras que pueden crecer hasta 60 m de altura en la copa de los árboles de los bosques templados a (sub)tropicales. Nuestro extenso trabajo de campo en toda su área de distribución, la revisión de especímenes de herbario y los estudios moleculares en curso han dado como resultado el descubrimiento de especies nuevas para la ciencia, así como conocimiento nuevo sobre la circunscripción de muchos taxones. Aquí presentamos descripciones enmendadas para siete especies de Hydrangea de Centro y Suramérica y discutimos la situación taxonómica de dos Hydrangeas colombianas, incluyendo una clave de identificación, ilustraciones y mapas de distribución. El trabajo de campo se llevó a cabo en Costa Rica, Panamá, Ecuador y Perú, incluída la exploración en áreas donde el género no había sido recolectado antes. Estos especímenes y observaciones se complementaron con el estudio de especímenes de 41 herbarios de Norte, Centro y Suramérica, así como de Europa. Se llevaron a cabo estudios morfológicos detallados de todas las especies, basados ​​en plantas vivas en su hábitat natural, así como en muestras secas de nuestras propias colecciones y todo el material de herbario disponible. El material tipo se estudió en detalle para todas las especies en cuestión. En base a una gran cantidad de caracteres morfológicos, combinados con patrones de distribución, diferencias fenológicas y preferencias ecológicas, incluyendo datos moleculares en la mayoría de los casos, Hydrangea peruviana y H. oerstedii son taxones claramente distintos, así como las otras siete especies mencionadas aquí, que habían sido sinonimizadas con cualquiera de estas dos especies. El presente estudio resulta en el reconocimiento de 26 especies en la sección Cornidia y ejemplifica la necesidad urgente de estudios taxonómicos profundos en plantas, ya que en muchas familias no disponemos de unidades de conservación bien circunscritas para mitigar la pérdida de biodiversidad sin precedentes.

8.
Front Plant Sci ; 11: 606809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519858

RESUMO

The process of hybridization occurs in approximately 40% of vascular plants, and this exchange of genetic material between non-conspecific individuals occurs unequally among plant lineages, being more frequent in certain groups such as Opuntia (Cactaceae). This genus is known for multiple taxonomic controversies due to widespread polyploidy and probable hybrid origin of several of its species. Southern Mexico species of this genus have been poorly studied despite their great diversity in regions such as the Tehuacán-Cuicatlán Valley which contains around 12% of recognized Mexico's native Opuntia species. In this work, we focus on testing the hybrid status of two putative hybrids from this region, Opuntia tehuacana and Opuntia pilifera, and estimate if hybridization occurs among sampled southern opuntias using two newly identified nuclear intron markers to construct phylogenetic networks with HyDe and Dsuite and perform invariant analysis under the coalescent model with HyDe and Dsuite. For the test of hybrid origin in O. tehuacana, our results could not recover hybridization as proposed in the literature, but we found introgression into O. tehuacana individuals involving O. decumbens and O. huajuapensis. Regarding O. pilifera, we identified O. decumbens as probable parental species, supported by our analysis, which sustains the previous hybridization hypothesis between Nopalea and Basilares clades. Finally, we suggest new hybridization and introgression cases among southern Mexican species involving O. tehuantepecana and O. depressa as parental species of O. velutina and O. decumbens.

9.
BMC Evol Biol ; 19(1): 28, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665356

RESUMO

BACKGROUND: The polyamine oxidases (PAOs) catabolize the oxidative deamination of the polyamines (PAs) spermine (Spm) and spermidine (Spd). Most of the phylogenetic studies performed to analyze the plant PAO family took into account only a limited number and/or taxonomic representation of plant PAOs sequences. RESULTS: Here, we constructed a plant PAO protein sequence database and identified four subfamilies. Subfamily PAO back conversion 1 (PAObc1) was present on every lineage included in these analyses, suggesting that BC-type PAOs might play an important role in plants, despite its precise function is unknown. Subfamily PAObc2 was exclusively present in vascular plants, suggesting that t-Spm oxidase activity might play an important role in the development of the vascular system. The only terminal catabolism (TC) PAO subfamily (subfamily PAOtc) was lost in Superasterids but it was present in all other land plants. This indicated that the TC-type reactions are fundamental for land plants and that their function could being taken over by other enzymes in Superasterids. Subfamily PAObc3 was the result of a gene duplication event preceding Angiosperm diversification, followed by a gene extinction in Monocots. Differential conserved protein motifs were found for each subfamily of plant PAOs. The automatic assignment using these motifs was found to be comparable to the assignment by rough clustering performed on this work. CONCLUSIONS: The results presented in this work revealed that plant PAO family is bigger than previously conceived. Also, they delineate important background information for future specific structure-function and evolutionary investigations and lay a foundation for the deeper characterization of each plant PAO subfamily.


Assuntos
Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Plantas/enzimologia , Análise de Sequência de Proteína , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Análise por Conglomerados , Bases de Dados de Proteínas , Filogenia , Domínios Proteicos , Homologia Estrutural de Proteína , Poliamina Oxidase
10.
Front Plant Sci ; 10: 1761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063915

RESUMO

Universal angiosperm enrichment probe sets designed to enrich hundreds of putatively orthologous nuclear single-copy loci are increasingly being applied to infer phylogenetic relationships of different lineages of angiosperms at a range of evolutionary depths. Studies applying such probe sets have focused on testing the universality and performance of the target nuclear loci, but they have not taken advantage of off-target data from other genome compartments generated alongside the nuclear loci. Here we do so to infer phylogenetic relationships in the orchid genus Epidendrum and closely related genera of subtribe Laeliinae. Our aims are to: 1) test the technical viability of applying the plant anchored hybrid enrichment (AHE) method (Angiosperm v.1 probe kit) to our focal group, 2) mine plastid protein coding genes from off-target reads; and 3) evaluate the performance of the target nuclear and off-target plastid loci in resolving and supporting phylogenetic relationships along a range of taxonomical depths. Phylogenetic relationships were inferred from the nuclear data set through coalescent summary and site-based methods, whereas plastid loci were analyzed in a concatenated partitioned matrix under maximum likelihood. The usefulness of target and flanking non-target nuclear regions and plastid loci was assessed through the estimation of their phylogenetic informativeness. Our study successfully applied the plant AHE probe kit to Epidendrum, supporting the universality of this kit in angiosperms. Moreover, it demonstrated the feasibility of mining plastome loci from off-target reads generated with the Angiosperm v.1 probe kit to obtain additional, uniparentally inherited sequence data at no extra sequencing cost. Our analyses detected some strongly supported incongruences between nuclear and plastid data sets at shallow divergences, an indication of potential lineage sorting, hybridization, or introgression events in the group. Lastly, we found that the per site phylogenetic informativeness of the ycf1 plastid gene surpasses that of all other plastid genes and several nuclear loci, making it an excellent candidate for assessing phylogenetic relationships at medium to low taxonomic levels in orchids.

11.
Mol Phylogenet Evol ; 114: 415-425, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28606445

RESUMO

The number of species recognized in section Asperae of the flowering plant genus Hydrangea differs widely between subsequent revisions. This variation is largely centered around the H. aspera species complex, with numbers of recognized species varying from one to nearly a dozen. Despite indications of molecular variation in this complex, no sequence-based species delimitation methods have been employed to evaluate the primarily morphology-based species boundaries. In the present study, a multi-locus coalescent-based approach to species delimitation is employed in order to identify separate evolutionary lines within H. sect. Asperae, using four chloroplast and four nuclear molecular markers. Eight lineages were recovered within the focal group, of which five correspond with named morphotypes. The other three lineages illustrate types of conflict between molecular species delimitation and traditional morphology-based taxonomy. One molecular lineage comprises two named morphotypes, which possibly diverged recently enough to not have developed sufficient molecular divergence. A second conflict is found in H. strigosa. This morphotype is recovered as a separate lineage when occurring in geographic isolation, but when occurring in sympatry with two other morphotypes (H. aspera and H. robusta), the coalescent species delimitation lumps these taxa into a single putative species.


Assuntos
Hydrangea/classificação , Teorema de Bayes , Cloroplastos/classificação , Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Hydrangea/anatomia & histologia , Hydrangea/genética , Microscopia Eletrônica de Varredura , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Quinona Redutases/classificação , Quinona Redutases/genética , RNA de Transferência de Valina/classificação , RNA de Transferência de Valina/genética
12.
Mol Phylogenet Evol ; 117: 111-123, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28535985

RESUMO

Recalcitrant relationships are characterized by very short internodes that can be found among shallow and deep phylogenetic scales all over the tree of life. Adding large amounts of presumably informative sequences, while decreasing systematic error, has been suggested as a possible approach to increase phylogenetic resolution. The development of enrichment strategies, coupled with next generation sequencing, resulted in a cost-effective way to facilitate the reconstruction of recalcitrant relationships. By applying the anchored hybrid enrichment (AHE) genome partitioning strategy to Aristolochia using an universal angiosperm probe set, we obtained 231-233 out of 517 single or low copy nuclear loci originally contained in the enrichment kit, resulting in a total alignment length of 154,756bp to 160,150bp. Since Aristolochia (Piperales; magnoliids) is distantly related to any angiosperm species whose genome has been used for the plant AHE probe design (Amborella trichopoda being the closest), it serves as a proof of universality for this probe set. Aristolochia comprises approximately 500 species grouped in several clades (OTUs), whose relationships to each other are partially unknown. Previous phylogenetic studies have shown that these lineages branched deep in time and in quick succession, seen as short-deep internodes. Short-shallow internodes are also characteristic of some Aristolochia lineages such as Aristolochia subsection Pentandrae, a clade of presumably recent diversification. This subsection is here included to test the performance of AHE at species level. Filtering and subsampling loci using the phylogenetic informativeness method resolves several recalcitrant phylogenetic relationships within Aristolochia. By assuming different ploidy levels during bioinformatics processing of raw data, first hints are obtained that polyploidization contributed to the evolution of Aristolochia. Phylogenetic results are discussed in the light of current systematics and morphology.


Assuntos
Aristolochia/classificação , Aristolochia/genética , Filogenia , Alelos , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Ploidias
13.
Mol Phylogenet Evol ; 117: 124-134, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28189618

RESUMO

We conducted a pilot study using Anchored Hybrid Enrichment to resolve relationships among a mostly Neotropical sage lineage that may have undergone a recent evolutionary radiation. Conventional markers (ITS, trnL-trnF and trnH-psbA) have not been able to resolve the relationships among species nor within portions of the backbone of the lineage. We sampled 12 representative species of subgenus Calosphace and included one species of Salvia's s.l. closest relative, Lepechinia, as outgroup. Hybrid enrichment and sequencing were successful, yielding 448 alignments of individual loci with an average length of 704bp. The performance of the phylogenomic data in phylogenetic reconstruction was superior to that of conventional markers, increasing both support and resolution. Because the captured loci vary in the amount of net phylogenetic informativeness at different phylogenetic depths, these data are promising in phylogenetic reconstruction of this group and likely other lineages within Lamiales. However, special attention should be placed on the amount of phylogenetic noise that the data could potentially contain. A prior exploration step using phylogenetic informativeness profiles to detect loci with sites with disproportionately high substitution rates (showing "phantom" spikes) and, if required, the ensuing filtering of the problematic data is recommended. In our dataset, filtering resulted in increased support and resolution for the shallow nodes in maximum likelihood phylogenetic trees resulting from concatenated analyses of all the loci. Additionally, it is expected that an increase in sampling (loci and taxa) will aid in resolving weakly supported, short deep internal branches.


Assuntos
Filogenia , Salvia/genética , Loci Gênicos/genética , Marcadores Genéticos/genética , Projetos Piloto , Análise de Sequência de DNA
14.
BMC Evol Biol ; 15: 132, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26141718

RESUMO

BACKGROUND: Identifying orthologous molecular markers that potentially resolve relationships at and below species level has been a major challenge in molecular phylogenetics over the past decade. Non-coding regions of nuclear low- or single-copy markers are a vast and promising source of data providing information for shallow-scale phylogenetics. Taking advantage of public transcriptome data from the One Thousand Plant Project (1KP), we developed a genome-scale mining strategy for recovering potentially orthologous single-copy markers to address low-scale phylogenetics. Our marker design targeted the amplification of intron-rich nuclear single-copy regions from genomic DNA. As a case study we used Hydrangea section Cornidia, one of the most recently diverged lineages within Hydrangeaceae (Cornales), for comparing the performance of three of these nuclear markers to other "fast" evolving plastid markers. RESULTS: Our data mining and filtering process retrieved 73 putative nuclear single-copy genes which are potentially useful for resolving phylogenetic relationships at a range of divergence depths within Cornales. The three assessed nuclear markers showed considerably more phylogenetic signal for shallow evolutionary depths than conventional plastid markers. Phylogenetic signal in plastid markers increased less markedly towards deeper evolutionary divergences. Potential phylogenetic noise introduced by nuclear markers was lower than their respective phylogenetic signal across all evolutionary depths. In contrast, plastid markers showed higher probabilities for introducing phylogenetic noise than signal at the deepest evolutionary divergences within the tribe Hydrangeeae (Hydrangeaceae). CONCLUSIONS: While nuclear single-copy markers are highly informative for shallow evolutionary depths without introducing phylogenetic noise, plastid markers might be more appropriate for resolving deeper-level divergences such as the backbone relationships of the Hydrangeaceae family and deeper, at which non-coding parts of nuclear markers could potentially introduce noise due to elevated rates of evolution. The herein developed and demonstrated transcriptome based mining strategy has a great potential for the design of novel and highly informative nuclear markers for a range of plant groups and evolutionary scales.


Assuntos
Genes de Plantas , Hydrangea/genética , Mineração de Dados , Evolução Molecular , Hydrangea/classificação , Filogenia , Plastídeos , Transcriptoma
15.
J R Soc Interface ; 11(99)2014 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-25079869

RESUMO

In the Neotropics, the genus Hydrangea of the popular ornamental hortensia family is represented by climbing species that strongly cling to their support surface by means of adhesive roots closely positioned along specialized anchoring stems. These root-climbing hortensia species belong to the nearly exclusive American Hydrangea section Cornidia and generally are long lianescent climbers that mostly flower and fructify high in the host tree canopy. The Mexican species Hydrangea seemannii, however, encompasses not only long lianescent climbers of large vertical rock walls and coniferous trees, but also short 'shrub-like' climbers on small rounded boulders. To investigate growth form plasticity in root-climbing hortensia species, we tested the hypothesis that support variability (e.g. differences in size and shape) promotes plastic responses observable at the mechanical, structural and anatomical level. Stem bending properties, architectural axis categorization, tissue organization and wood density were compared between boulder and long-vertical tree-climbers of H. seemannii. For comparison, the mechanical patterns of a closely related, strictly long-vertical tree-climbing species were investigated. Hydrangea seemannii has fine-tuned morphological, mechanical and anatomical responses to support variability suggesting the presence of two alternative root-climbing strategies that are optimized for their particular environmental conditions. Our results suggest that variation of some stem anatomical traits provides a buffering effect that regulates the mechanical and hydraulic demands of two distinct plant architectures. The adaptive value of observed plastic responses and the importance of considering growth form plasticity in evolutionary and conservation studies are discussed.


Assuntos
Hydrangea/anatomia & histologia , Hydrangea/fisiologia , Movimento/fisiologia , Raízes de Plantas/fisiologia , Análise de Variância , Fenômenos Biomecânicos , México
16.
Mol Phylogenet Evol ; 66(1): 233-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23063487

RESUMO

In evolutionary biology appropriate marker selection for the reconstruction of solid phylogenetic hypotheses is fundamental. One of the most challenging tasks addresses the appropriate choice of genomic regions in studies of closely related species. Robust phylogenetic frameworks are central to studies dealing with questions ranging from evolutionary and conservation biology, biogeography to plant breeding. Phylogenetic informativeness profiles provide a quantitative measure of the phylogenetic signal in markers and therefore a method for locus prioritization. The present work profiles phylogenetic informativeness of mostly non-coding chloroplast regions in an angiosperm lineage of closely related species: the popular ornamental tribe Hydrangeeae (Hydrangeaceae, Cornales, Asterids). A recent phylogenetic study denoted a case of resolution contrast between the two strongly supported clades within tribe Hydrangeeae. We evaluate the phylogenetic signal of 13 highly variable plastid markers for estimating relationships within and among the currently recognized monophyletic groups of this tribe. A selection of combined loci based on their phylogenetic informativeness retrieved more robust phylogenetic hypotheses than simply combining individual markers performing best with respect to resolution, nodal support and accuracy or those presenting the highest number of parsimony informative characters. We propose the rpl32-ndhF intergenic spacer (IGS), trnV-ndhC IGS, trnL-rpl32 IGS, psbT-petB region and ndhA intron as the best candidates for future phylogenetic studies in Hydrangeeae and potentially in other Asterids. We also contrasted the phylogenetic informativeness of coded indels against substitutions concluding that, despite their low phylogenetic informativeness, coded indels provide additional phylogenetic signal that is nearly free of noise. Phylogenetic relationships obtained from our total combined analyses showed improved resolution and nodal support with respect to recently published results.


Assuntos
DNA de Cloroplastos/genética , Hydrangeaceae/classificação , Filogenia , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Marcadores Genéticos , Hydrangeaceae/genética , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...