Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 10682-10686, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38033298

RESUMO

Flexible nanoporous materials are of great interest for applications in many fields such as sensors, catalysis, material separation, and energy storage. Of these, metal-organic frameworks (MOFs) are the most explored thus far. However, tuning their flexibility for a particular application remains challenging. In this work, we explore the effect of the exogenous property of crystallite size on the flexibility of the ZIF-8 MOF. By subjecting hydrophobic ZIF-8 to hydrostatic compression with water, the flexibility of its empty framework and the giant negative compressibility it experiences during water intrusion were recorded via in operando synchrotron irradiation. It was observed that as the crystallite size is reduced to the nanoscale, both flexibility and the negative compressibility of the framework are reduced by ∼25% and ∼15%, respectively. These results pave the way for exogenous tuning of flexibility in MOFs without altering their chemistries.

2.
J Mater Chem A Mater ; 11(24): 12866-12875, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37346737

RESUMO

Improving the perovskite/electron-transporting layer (ETL) interface is a crucial task to boost the performance of perovskite solar cells (PSCs). This is utterly fundamental in an inverted (p-i-n) configuration using fullerene-based ETLs. Here, we propose a scalable strategy to improve fullerene-based ETLs by incorporating high-quality few-layer graphene flakes (GFs), industrially produced through wet-jet milling exfoliation of graphite, into phenyl-C61-butyric acid methyl ester (PCBM). Our new composite ETL (GF:PCBM) can be processed into an ultrathin (∼10 nm), pinhole-free film atop the perovskite. We find that the presence of GFs in the PCBM matrix reduces defect-mediated recombination, while creating preferential paths for the extraction of electrons towards the current collector. The use of our GF-based composite ETL resulted in a significant enhancement in the open circuit voltage and fill factor of triple cation-based inverted PSCs, boosting the power conversion efficiency from ∼19% up to 20.8% upon the incorporation of GFs into the ETL.

3.
Mater Adv ; 4(11): 2410-2417, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37287527

RESUMO

Hybrid perovskites have been considered a hot material in the semiconductor industry; included as an active layer in advanced devices, from light emitting applications to solar cells, where they lead as a new strategic solution, they promise to be the next generation high impact class of materials. However, the presence - in most cases - of lead in their matrix, or lead byproducts as a consequence of material degradation, such as PbI2, is currently hindering their massive deployment. Here, we develop a fluorescent organic sensor (FS) based on the Pb-selective BODIPY fluorophore that emits when the analyte - lead in this case - is detected. We carried out a fluorimetric analysis to quantify the trace concentration of Pb2+ released from lead-based perovskite solar cells, exploring different material compositions. In particular, we immersed the devices in rainwater, to simulate the behavior of the devices under atmospheric conditions when the sealing is damaged. The sensor is studied in a phosphate buffer solution (PBS) at pH 4.5 to simulate the pH of acidic rain, and the results obtained are compared with ICP-OES measurements. We found that with fluorometric analysis, lead concentration could be calculated with a detection limit as low as 5 µg l-1, in agreement with ICP-OES analysis. In addition, we investigated the possibility of using the sensor on a solid substrate for direct visualization to determine the presence of Pb. This can constitute the base for the development of a Pb-based label that can switch on if lead is detected, alerting any possible leakage.

4.
J Colloid Interface Sci ; 645: 775-783, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37172487

RESUMO

HYPOTHESIS: The behavior of Heterogeneous Lyophobic Systems (HLSs) comprised of a lyophobic porous material and a corresponding non-wetting liquid is affected by a variety of different structural parameters of the porous material. Dependence on exogenic properties such as crystallite size is desirable for system tuning as they are much more facilely modified. We explore the dependence of intrusion pressure and intruded volume on crystallite size, testing the hypothesis that the connection between internal cavities and bulk water facilitates intrusion via hydrogen bonding, a phenomenon that is magnified in smaller crystallites with a larger surface/volume ratio. EXPERIMENTS: Water intrusion/extrusion pressures and intrusion volume were experimentally measured for ZIF-8 samples of various crystallite sizes and compared to previously reported values. Alongside the practical research, molecular dynamics simulations and stochastic modeling were performed to illustrate the effect of crystallite size on the properties of the HLSs and uncover the important role of hydrogen bonding within this phenomenon. FINDINGS: A reduction in crystallite size led to a significant decrease of intrusion and extrusion pressures below 100 nm. Simulations indicate that this behavior is due to a greater number of cages being in proximity to bulk water for smaller crystallites, allowing cross-cage hydrogen bonds to stabilize the intruded state and lower the threshold pressure of intrusion and extrusion. This is accompanied by a reduction in the overall intruded volume. Simulations demonstrate that this phenomenon is linked to ZIF-8 surface half-cages exposed to water being occupied by water due to non-trivial termination of the crystallites, even at atmospheric pressure.

5.
J Phys Chem Lett ; 14(14): 3535-3552, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37017277

RESUMO

Ferroelectric ceramics such as PbZrxTi1-xO3 (PZT) are widely applied in many fields, from medical to aerospace, because of their dielectric, piezoelectric, and pyroelectric properties. In the past few years, hybrid organic-inorganic halide perovskites have gradually attracted attention for their optical and electronic properties, including ferroelectricity, and for their low fabrication costs. In this Review, we first describe techniques that are used to quantify ferroelectric figures of merit of a material. We then discuss ferroelectricity in hybrid perovskites, starting from controversies in methylammonium iodoplumbate perovskites and then focusing on low-dimensional perovskites that offer an unambiguous platform to obtain ferroelectricity. Finally, we provide examples of the application of perovskite ferroelectrics in solar cells, LEDs, and X-ray detectors. We conclude that the vast structure-property tunability makes low-dimensional hybrid perovskites promising, but they have yet to offer ferroelectric figures of merit (e.g., saturated polarization) and thermal stability (e.g., Curie temperature) competitive with those of conventional oxide perovskite ferroelectric materials.

6.
Nat Commun ; 14(1): 2426, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105984

RESUMO

Hybrid perovskites have emerged as a promising material candidate for exciton-polariton (polariton) optoelectronics. Thermodynamically, low-threshold Bose-Einstein condensation requires efficient scattering to the polariton energy dispersion minimum, and many applications demand precise control of polariton interactions. Thus far, the primary mechanisms by which polaritons relax in perovskites remains unclear. In this work, we perform temperature-dependent measurements of polaritons in low-dimensional perovskite wedged microcavities achieving a Rabi splitting of [Formula: see text] = 260 ± 5 meV. We change the Hopfield coefficients by moving the optical excitation along the cavity wedge and thus tune the strength of the primary polariton relaxation mechanisms in this material. We observe the polariton bottleneck regime and show that it can be overcome by harnessing the interplay between the different excitonic species whose corresponding dynamics are modified by strong coupling. This work provides an understanding of polariton relaxation in perovskites benefiting from efficient, material-specific relaxation pathways and intracavity pumping schemes from thermally brightened excitonic species.

7.
Energy Environ Sci ; 16(2): 421-429, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36818744

RESUMO

The levelized cost of electricity (LCOE) is a techno-economic analysis that evaluates the cost potential of any electricity-producing technology. LCOE represents a powerful metric to compare the most efficient renewable resources in the framework of the energy transition. Perovskite solar cells (PSCs) are an emerging technology with great potential to establish a leading position in the photovoltaic (PV) market, particularly in those regions that cannot rely on crystalline silicon manufacturing. However, like many emerging technologies, their positioning in the PV market is still quite speculative. Here, we revise the different models to evaluate the LCOE of PSCs, paying attention to the impact of performance, stability, and manufacturing costs. We consider the difference in performances from lab-record devices to modules fabricated in industrial production lines. We identify the key role of the degradation that is hindering the commercialization of PSCs and we analyze the manufacturing cost and the supply chain availability. From our analysis, we restricted the LCOE to 3-6 cents (USD) per kWh, which is competitive with the best of the mainstream silicon technologies (passivated emitter and rear contact, PERC). In conclusion, we highlight the future challenges to refine the LCOE calculations, including temperature effects.

8.
Adv Mater ; 35(2): e2207656, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314390

RESUMO

Perovskite solar cells (PSCs) longevity is nowadays the bottleneck for their full commercial exploitation. Although lot of research is ongoing, the initial decay of the output power - an effect known as "burn-in" degradation happening in the first 100 h - is still unavoidable, significantly reducing the overall performance (typically of >20%). In this paper, the origin of the "burn-in" degradation in n-i-p type PSCs is demonstrated that is directly related to Li+ ions migration coming from the SnO2 electron transporting layer visualized by time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements. To block the ion movement, a thin cross-linked [6,6]-phenyl-C61-butyric acid methyl ester layer on top of the SnO2 layer is introduced, resulting in Li+ immobilization. This results in the elimination of the "burn-in" degradation, showing for the first time a zero "burn-in" loss in the performances while boosting device power conversion efficiency to >22% for triple-cation-based PSCs and >24% for formamidinium-based (FAPbI3 ) PSCs, proving the general validity of this approach and creating a new framework for the realization of stable PSCs devices.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35656844

RESUMO

Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.

11.
Nat Commun ; 13(1): 2868, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606374

RESUMO

Interface engineering through passivating agents, in the form of organic molecules, is a powerful strategy to enhance the performance of perovskite solar cells. Despite its pivotal function in the development of a rational device optimization, the actual role played by the incorporation of interfacial modifications and the interface physics therein remains poorly understood. Here, we investigate the interface and device physics, quantifying charge recombination and charge losses in state-of-the-art inverted solar cells with power conversion efficiency beyond 23% - among the highest reported so far - by using multidimensional photoluminescence imaging. By doing that we extract physical parameters such as quasi-Fermi level splitting (QFLS) and Urbach energy enabling us to assess that the main passivation mechanism affects the perovskite/PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) interface rather than surface defects. In this work, by linking optical, electrical measurements and modelling we highlight the benefits of organic passivation, made in this case by phenylethylammonium (PEAI) based cations, in maximising all the photovoltaic figures of merit.

12.
JACS Au ; 2(1): 136-149, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35098230

RESUMO

Lead-free perovskites are attracting increasing interest as nontoxic materials for advanced optoelectronic applications. Here, we report on a family of silver/bismuth bromide double perovskites with lower dimensionality obtained by incorporating phenethylammonium (PEA) as an organic spacer, leading to the realization of two-dimensional double perovskites in the form of (PEA)4AgBiBr8 (n = 1) and the first reported (PEA)2CsAgBiBr7 (n = 2). In contrast to the situation prevailing in lead halide perovskites, we find a rather weak influence of electronic and dielectric confinement on the photophysics of the lead-free double perovskites, with both the 3D Cs2AgBiBr6 and the 2D n = 1 and n = 2 materials being dominated by strong excitonic effects. The large measured Stokes shift is explained by the inherent soft character of the double-perovskite lattices, rather than by the often-invoked band to band indirect recombination. We discuss the implications of these results for the use of double perovskites in light-emitting applications.

13.
Struct Dyn ; 9(1): 011101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35071690

RESUMO

Electro-optical spectroscopy is nowadays a routine approach for the analysis of light induced properties and dynamical processes in matter, whose understanding is particularly crucial for the intelligent design of novel synthetic materials and the engineering and optimization of high-impact optoelectronic devices. Currently, within this field, it is the common choice to rely on multiple commercial setups, often costly and complex, which can rarely combine multiple functions at the same time with the required sensitivity, resolution, and spectral tunability (in both excitation and detection). Here, we present an innovative, compact, and low-cost system based on "three in one" components for the simultaneous electro-optical material and device characterization. It relies on compact fiber-coupled Fourier transform spectroscopy, the core of the system, enabling a fast spectral analysis to acquire simultaneously wavelength and time resolved photoluminescence (PL) maps (as a function of the time and wavelength), PL quantum yield, and electroluminescence signal. Our system bypasses conventional ones, proposing a new solution for a compact, low-cost, and user-friendly tool, while maintaining high levels of resolution and sensitivity.

14.
ACS Appl Mater Interfaces ; 14(1): 961-970, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958554

RESUMO

Layered lead halide perovskites (2D LHPs) are attracting considerable attention as a promising material for a new generation of solar cell devices. LHPs have been presented as a more stable alternative to the more widespread 3D bulk perovskite materials; however, a critical analysis of their photostability is still lacking. In this work, we perform a comparative study between BA2MAn-1PbnI3n+1 (BA─butylammonium and MA─methylammonium) 2D LHPs with different dimensionalities (n = 1-3) and MAPbI3 3D perovskites. We compare different stability testing protocols including photometrical determination of iodine-containing products in nonpolar solvents, X-ray diffraction, and photoluminescence (PL) spectroscopy. The resulting trends of the photostability in an inert atmosphere based on PL spectroscopy measurements demonstrate a nonmonotonic dependence of the degradation rate on the perovskite layer thickness n with a "stability island" at n ≥ 3, which is caused by a combination of antibate factors of electronic structures and chemical compositions in the family of 2D perovskites. We also identify a critical oxygen concentration in the surrounding environment that affects the mechanism and strongly enhances the rate of layered perovskite photodegradation.

15.
J Med Virol ; 94(4): 1336-1349, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845731

RESUMO

The entire world has been suffering from the coronavirus disease 2019 (COVID-19) pandemic since March 11, 2020. More than a year later, the COVID-19 vaccination brought hope to control this viral pandemic. Here, we review the unknowns of the COVID-19 vaccination, such as its longevity, asymptomatic spread, long-term side effects, and its efficacy on immunocompromised patients. In addition, we discuss challenges associated with the COVID-19 vaccination, such as the global access and distribution of vaccine doses, adherence to hygiene guidelines after vaccination, the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, and vaccine resistance. Despite all these challenges and the fact that the end of the COVID-19 pandemic is still unclear, vaccines have brought great hope for the world, with several reports indicating a significant decline in the risk of COVID19-related infection and hospitalizations.


Assuntos
COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinação , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/provisão & distribuição , Saúde Global , Humanos , Hospedeiro Imunocomprometido , Mutação , SARS-CoV-2/genética , Vacinação/efeitos adversos , Vacinação/psicologia , Hesitação Vacinal , Eficácia de Vacinas
16.
Adv Mater ; 34(1): e2105942, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34658076

RESUMO

Halide perovskite materials offer an ideal playground for easily tuning their color and, accordingly, the spectral range of their emitted light. In contrast to common procedures, this work demonstrates that halide substitution in Ruddlesden-Popper perovskites not only progressively modulates the bandgap, but it can also be a powerful tool to control the nanoscale phase segregation-by adjusting the halide ratio and therefore the spatial distribution of recombination centers. As a result, thin films of chloride-rich perovskite are engineered-which appear transparent to the human eye-with controlled tunable emission in the green. This is due to a rational halide substitution with iodide or bromide leading to a spatial distribution of phases where the minor component is responsible for the tunable emission, as identified by combined hyperspectral photoluminescence imaging and elemental mapping. This work paves the way for the next generation of highly tunable transparent emissive materials, which can be used as light-emitting pixels in advanced and low-cost optoelectronics.

18.
Sci Adv ; 7(49): eabj7930, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851671

RESUMO

Despite remarkable progress, the performance of lead halide perovskite solar cells fabricated in an inverted structure lags behind that of standard architecture devices. Here, we report on a dual interfacial modification approach based on the incorporation of large organic cations at both the bottom and top interfaces of the perovskite active layer. Together, this leads to a simultaneous improvement in both the open-circuit voltage and fill factor of the devices, reaching maximum values of 1.184 V and 85%, respectively, resulting in a champion device efficiency of 23.7%. This dual interfacial modification is fully compatible with a bulk modification of the perovskite active layer by ionic liquids, leading to both efficient and stable inverted architecture devices.

19.
Chem Soc Rev ; 50(21): 11870-11965, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494631

RESUMO

In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.

20.
Chempluschem ; 86(8): 1040-1041, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34128360

RESUMO

Invited for this month's cover are collaborators from University of Pavia, École Polytechnique Fédérale de Lausanne, University of Messina and Istituto Italiano di Tecnologia. The cover picture shows the crystal structure of a Ruddlesden-Popper quasi-2D perovskite with chemical formula (PEA)2 MA39 Pb40 I121 (with PEA: phenylethylammonium and MA: methylammonium). The subscript 40 indicates the number of PbI6 octahedra separated by a double layer of PEA cations. Such quasi-2D perovskites exhibit efficient photovoltaic performances and higher stability with respect to the pure 3D counterpart (MAPbI3 ). This article is part of the Special Collection on "Perovskite Materials and Devices". Read the full text of the article at 10.1002/cplu.202000777.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...