Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 35(4): 427-37, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25893306

RESUMO

Cancer is associated with strong changes in lipid metabolism. For instance, normal cells take up fatty acids (FAs) from the circulation, while tumour cells generate their own and become dependent on de novo FA synthesis, which could provide a vulnerability to target tumour cells. Betulinic acid (BetA) is a natural compound that selectively kills tumour cells through an ill-defined mechanism that is independent of BAX and BAK, but depends on mitochondrial permeability transition-pore opening. Here we unravel this pathway and show that BetA inhibits the activity of steroyl-CoA-desaturase (SCD-1). This enzyme is overexpressed in tumour cells and critically important for cells that utilize de novo FA synthesis as it converts newly synthesized saturated FAs to unsaturated FAs. Intriguingly, we find that inhibition of SCD-1 by BetA or, alternatively, with a specific SCD-1 inhibitor directly and rapidly impacts on the saturation level of cardiolipin (CL), a mitochondrial lipid that has important structural and metabolic functions and at the same time regulates mitochondria-dependent cell death. As a result of the enhanced CL saturation mitochondria of cancer cells, but not normal cells that do not depend on de novo FA synthesis, undergo ultrastructural changes, release cytochrome c and quickly induce cell death. Importantly, addition of unsaturated FAs circumvented the need for SCD-1 activity and thereby prevented BetA-induced CL saturation and subsequent cytotoxicity, supporting the importance of this novel pathway in the cytotoxicity induced by BetA.


Assuntos
Cardiolipinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Citocromos c/metabolismo , Ácidos Graxos/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Triterpenos Pentacíclicos , Estearoil-CoA Dessaturase/metabolismo , Ácido Betulínico
2.
Cell Death Differ ; 21(7): 1170-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682005

RESUMO

Tumor heterogeneity is in part determined by the existence of cancer stem cells (CSCs) and more differentiated tumor cells. CSCs are considered to be the tumorigenic root of cancers and suggested to be chemotherapy resistant. Here we exploited an assay that allowed us to measure chemotherapy-induced cell death in CSCs and differentiated tumor cells simultaneously. This confirmed that CSCs are selectively resistant to conventional chemotherapy, which we revealed is determined by decreased mitochondrial priming. In agreement, lowering the anti-apoptotic threshold using ABT-737 and WEHI-539 was sufficient to enhance chemotherapy efficacy, whereas ABT-199 failed to sensitize CSCs. Our data therefore point to a crucial role of BCLXL in protecting CSCs from chemotherapy and suggest that BH3 mimetics, in combination with chemotherapy, can be an efficient way to target chemotherapy-resistant CSCs.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias do Colo/patologia , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/fisiologia , Sobrevivência Celular , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células Tumorais Cultivadas , Proteína bcl-X/antagonistas & inibidores
4.
Stem Cell Res ; 1(2): 116-28, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19383392

RESUMO

The molecular mechanisms controlling DNA-damage-induced apoptosis of human embryonic stem cells (hESC) are poorly understood. Here we investigate the role of p53 in etoposide-induced apoptosis. We show that p53 is constitutively expressed at high levels in the cytoplasm of hESC. Etoposide treatment results in a rapid and extensive induction of apoptosis and leads to a further increase in p53 and PUMA expression as well as Bax processing. p53 both translocates to the nucleus and associates with the mitochondria, accompanied by colocalization of Bax with Mcl1. hESC stably transduced with p53 shRNA display 80% reduction of endogenous p53 and exhibit an 80% reduction in etoposide-induced apoptosis accompanied by constitutive downregulation of Bax and an attenuated upregulation of PUMA. Our data further show that undifferentiated hESC that express Oct4 are much more sensitive to etoposide-induced apoptosis than their more differentiated progeny. Our study demonstrates that p53 is required for etoposide-induced apoptosis of hESC and reveals, at least in part, the molecular mechanism of DNA-damage-induced apoptosis in hESC.


Assuntos
Apoptose/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Etoposídeo/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas Reguladoras de Apoptose/genética , Citoplasma/química , Dano ao DNA , Regulação da Expressão Gênica , Humanos , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...