Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(20)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194485

RESUMO

No disease-modifying drug exists for osteoarthritis (OA). Despite success in animal models, candidate drugs continue to fail in clinical trials owing to the unmapped interpatient heterogeneity and disease complexity. We used a single-cell platform based on cytometry by time-of-flight (cyTOF) to precisely outline the effects of candidate drugs on human OA chondrocytes. OA chondrocytes harvested from patients undergoing total knee arthroplasty were treated with 2 drugs, an NF-κB pathway inhibitor, BMS-345541, and a chondroinductive small molecule, kartogenin, that showed preclinical success in animal models for OA. cyTOF conducted with 30 metal isotope-labeled antibodies parsed the effects of the drugs on inflammatory, senescent, and chondroprogenitor cell populations. The NF-κB pathway inhibition decreased the expression of p-NF-κB, HIF2A, and inducible NOS in multiple chondrocyte clusters and significantly depleted 4 p16ink4a-expressing senescent populations, including NOTCH1+STRO1+ chondroprogenitor cells. While kartogenin also affected select p16ink4a-expressing senescent clusters, there was a less discernible effect on chondroprogenitor cell populations. Overall, BMS-345541 elicited a uniform drug response in all patients, while only a few responded to kartogenin. These studies demonstrate that a single-cell cyTOF-based drug screening platform can provide insights into patient response assessment and patient stratification.


Assuntos
Cartilagem , Avaliação Pré-Clínica de Medicamentos , Osteoartrite , Humanos , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Homeostase/efeitos dos fármacos , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
2.
Bio Protoc ; 11(14): e4086, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395725

RESUMO

Single-cell technologies have allowed high-resolution profiling of tissues and thus a deeper understanding of tissue homeostasis and disease heterogeneity. Understanding this heterogeneity can be especially important for tailoring treatments in a patient-specific manner. Here, we detail methods for preparing human cartilage tissue for profiling via cytometry by time-of-flight (cyTOF). We have previously utilized this method to characterize several rare cell populations in cartilage, including cartilage-progenitor cells, inflammation-amplifying cells (Inf-A), and inflammation-dampening cells (Inf-D). Previous bio-protocols have focused on cyTOF staining of PBMCs. Therefore, here we detail the steps unique to the processing of human cartilage and chondrocytes. Briefly, cartilage tissue is digested to release individual chondrocytes, which can be expanded and manipulated in culture. These cells are then collected and fixed in preparation for cyTOF, followed by standard staining and analysis protocols.

3.
Front Mol Neurosci ; 14: 686790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025354

RESUMO

[This corrects the article DOI: 10.3389/fnmol.2020.00083.].

4.
Methods Mol Biol ; 2221: 101-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32979201

RESUMO

Cytosine modifications can alter the epigenetic landscape of a cell, affecting the binding of transcription factors, chromatin organizing complexes, and ultimately affecting gene expression and cell fate. 5-Hydroxymethylcytosine (5hmC) modifications are generated by the Ten-eleven-translocation (TET) family of enzymes, TET 1, 2, and 3, through the oxidation of methylated cytosines (5mC). The TET family is capable of further oxidizing 5hmC to 5fC and 5caC, leading to eventual DNA demethylation. However, 5hmC marks can also exist stably in DNA. Stable 5hmC is enriched in the gene bodies of activated genes in multiple tissues, as well as associated with regulatory regions such as enhancers. Alterations to 5hmC patterns have now been found in multiple diseases including osteoarthritis. Here, we describe a method to map 5hmC modifications by next-generation sequencing using a technique based on the selective modification and enrichment of the 5hmC mark. We additionally provide a bioinformatic analysis pipeline to interpret the resulting data.


Assuntos
5-Metilcitosina/análogos & derivados , DNA/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Músculo Esquelético/química , 5-Metilcitosina/análise , Animais , Metilação de DNA , Humanos
5.
JBMR Plus ; 4(8): e10383, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33134768

RESUMO

Skeletal development is a tightly orchestrated process in which cartilage and bone differentiation are intricately intertwined. Recent studies have highlighted the contribution of epigenetic modifications and their writers to skeletal development. Methylated cytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the Ten-eleven-translocation (TET) enzymes leading to demethylation. We have previously demonstrated that 5hmC is stably accumulated on lineage-specific genes that are activated during in vitro chondrogenesis in the ATDC5 chondroprogenitors. Knockdown (KD) of Tet1 via short-hairpin RNAs blocked ATDC5 chondrogenic differentiation. Here, we aimed to provide the mechanistic basis for TET1 function during ATDC5 differentiation. Transcriptomic analysis of Tet1 KD cells demonstrated that 54% of downregulated genes were SOX9 targets, suggesting a role for TET1 in mediating activation of a subset of the SOX9 target genes. Using genome-wide mapping of 5hmC during ATDC5 differentiation, we found that 5hmC is preferentially accumulated at chondrocyte-specific class II binding sites for SOX9, as compared with the tissue-agnostic class I sites. Specifically, we find that SOX9 is unable to bind to Col2a1 and Acan after Tet1 KD, despite no changes in SOX9 levels. Finally, we compared this KD scenario with the genetic loss of TET1 in the growth plate using Tet1 -/- embryos, which are approximately 10% smaller than their WT counterparts. In E17.5 Tet1 -/- embryos, loss of SOX9 target gene expression is more modest than upon Tet1 KD in vitro. Overall, our data suggest a role for TET1-mediated 5hmC deposition in partly shaping an epigenome conducive for SOX9 function. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

6.
Front Mol Neurosci ; 13: 83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523514

RESUMO

In the mature cochlea, each inner hair cell (IHC) is innervated by multiple spiral ganglion neurons of type I (SGNI). SGNIs are morphologically and electro-physiologically diverse. Also, they differ in their susceptibility to noise insult. However, the molecular underpinnings of their identity and physiological differences remain poorly understood. In this study, we developed a novel triple transgenic mouse, which enabled the isolation of pure populations of SGNIs and the analysis of a 96-gene panel via single-cell qPCR. We found three distinct populations of Type I SGNs, which were marked by their exclusive expression of Lmx1a, Slc4a4, or Mfap4/Fzd2, respectively, at postnatal days P3, P8, and P12. Our data suggest that afferent SGN subtypes are established genetically before the onset of hearing and that the expression of key physiological markers, such as ion channels, is heterogeneous and may be underlying the heterogeneous firing proprieties of SGNIs.

7.
Trends Pharmacol Sci ; 41(8): 557-569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32586653

RESUMO

Osteoarthritis (OA) is an age-associated disease characterized by chronic joint pain resulting from degradation of articular cartilage, inflammation of the synovial lining, and changes to the subchondral bone. Despite the wide prevalence, no FDA-approved disease-modifying drugs exist. Recent evidence has demonstrated that epigenetic dysregulation of multiple molecular pathways underlies OA pathogenesis, providing a new mechanistic and therapeutic axis with the advantage of targeting multiple deregulated pathways simultaneously. In this review, we focus on the epigenetic regulators that have been implicated in OA, their individual roles, and potential crosstalk. Finally, we discuss the pharmacological molecules that can modulate their activities and discuss the potential advantages and challenges associated with epigenome-based therapeutics for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Osso e Ossos , Epigênese Genética , Humanos , Inflamação , Osteoartrite/tratamento farmacológico , Osteoartrite/genética
8.
Sci Adv ; 6(11): eaay5352, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32201724

RESUMO

Aging or injury leads to degradation of the cartilage matrix and the development of osteoarthritis (OA). Because of a paucity of single-cell studies of OA cartilage, little is known about the interpatient variability in its cellular composition and, more importantly, about the cell subpopulations that drive the disease. Here, we profiled healthy and OA cartilage samples using mass cytometry to establish a single-cell atlas, revealing distinct chondrocyte progenitor and inflammation-modulating subpopulations. These rare populations include an inflammation-amplifying (Inf-A) population, marked by interleukin-1 receptor 1 and tumor necrosis factor receptor II, whose inhibition decreased inflammation, and an inflammation-dampening (Inf-D) population, marked by CD24, which is resistant to inflammation. We devised a pharmacological strategy targeting Inf-A and Inf-D cells that significantly decreased inflammation in OA chondrocytes. Using our atlas, we stratified patients with OA in three groups that are distinguished by the relative proportions of inflammatory to regenerative cells, making it possible to devise precision therapeutic approaches.


Assuntos
Cartilagem/metabolismo , Cartilagem/patologia , Citometria de Fluxo , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Análise de Célula Única , Biomarcadores , Antígeno CD24/metabolismo , Condrócitos/metabolismo , Citometria de Fluxo/métodos , Humanos , Osteoartrite/etiologia , Análise de Célula Única/métodos
9.
J Orthop Res ; 37(8): 1760-1770, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31042308

RESUMO

There is intense clinical interest in the potential effects of platelet-rich plasma (PRP) for the treatment of osteoarthritis (OA). This study tested the hypotheses that (i) "lower" levels of the inflammatory mediators (IMs), interleukin-1ß, and tumor necrosis factor α (TNF-α) and (ii) "higher" levels of the growth factors (GFs), insulin-like growth factor 1, and transforming growth factor ß1 within leukocyte-poor PRP correlate with more favorable chondrocyte and macrophage responses in vitro. Samples were collected from 10 "healthy" young male (23-33 years old) human subjects (H-PRP) and nine older (62-85 years old) male patients with severe knee OA (OA-PRP). The samples were separated into groups of "high" or "low" levels of IM and GF based on multiplex cytokine and enzyme-linked immunosorbent assay data. Three-dimensional (3D) alginate bead chondrocyte cultures and monocyte-derived macrophage cultures were treated with 10% PRP from donors in different groups. Gene expression was analyzed by quantitative polymerase chain reaction. Contrary to our hypotheses, the effect of PRP on chondrocytes and macrophages was mainly influenced by the age and disease status of the PRP donor as opposed to the IM or GF groupings. While H-PRP showed similar effects on expression of chondrogenic markers (Col2a1 and Sox9) as the negative control group (p > 0.05), OA-PRP decreased chondrocyte expression of Col2a1 and Sox-9 messenger RNA by 40% and 30%, respectively (Col2a1, p = 0.015; Sox9, p = 0.037). OA-PRP also upregulated TNF-α and matrix metallopeptidase 9 (p < 0.001) gene expression in macrophages while H-PRP did not. This data suggests that PRP from older individuals with OA contain factors that may suppress chondrocyte matrix synthesis and promote macrophage inflammation in vitro. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1760-1770, 2019.


Assuntos
Condrócitos/metabolismo , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteoartrite do Joelho/metabolismo , Plasma Rico em Plaquetas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...