Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 289(5476): 85-8, 2000 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-10884229

RESUMO

Domestication of many plants has correlated with dramatic increases in fruit size. In tomato, one quantitative trait locus (QTL), fw2.2, was responsible for a large step in this process. When transformed into large-fruited cultivars, a cosmid derived from the fw2.2 region of a small-fruited wild species reduced fruit size by the predicted amount and had the gene action expected for fw2.2. The cause of the QTL effect is a single gene, ORFX, that is expressed early in floral development, controls carpel cell number, and has a sequence suggesting structural similarity to the human oncogene c-H-ras p21. Alterations in fruit size, imparted by fw2.2 alleles, are most likely due to changes in regulation rather than in the sequence and structure of the encoded protein.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Solanum lycopersicum/genética , Alelos , Sequência de Aminoácidos , Evolução Biológica , Contagem de Células , Divisão Celular , Clonagem Molecular , Mapeamento de Sequências Contíguas , Frutas/crescimento & desenvolvimento , Teste de Complementação Genética , Humanos , Solanum lycopersicum/citologia , Solanum lycopersicum/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação , Proteína Oncogênica p21(ras)/química , Proteína Oncogênica p21(ras)/genética , Proteínas de Plantas/química , Estruturas Vegetais/citologia , Estruturas Vegetais/genética , Plantas Geneticamente Modificadas , Estrutura Secundária de Proteína , Alinhamento de Sequência , Transformação Genética
2.
Genetics ; 150(2): 899-909, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9755218

RESUMO

Wild species are valued as a unique source of genetic variation, but they have rarely been used for the genetic improvement of quantitative traits. To identify trait-improving quantitative trait loci (QTL) alleles from exotic species, an accession of Oryza rufipogon, a relative of cultivated rice, was chosen on the basis of a genetic diversity study. An interspecific BC2 testcross population (V20A/O. rufipogon//V20B///V20B////Ce64) consisting of 300 families was evaluated for 12 agronomically important quantitative traits. The O. rufipogon accession was phenotypically inferior for all 12 traits. However, transgressive segregants that outperformed the original elite hybrid variety, V20A/Ce64, were observed for all traits examined. A set of 122 RFLP and microsatellite markers was used to identify QTL. A total of 68 significant QTL were identified, and of these, 35 (51%) had beneficial alleles derived from the phenotypically inferior O. rufipogon parent. Nineteen (54%) of these beneficial QTL alleles were free of deleterious effects on other characters. O. rufipogon alleles at two QTL on chromosomes 1 and 2 were associated with an 18 and 17% increase in grain yield per plant, respectively, without delaying maturity or increasing plant height. This discovery suggests that the innovative use of molecular maps and markers can alter the way geneticists utilize wild and exotic germplasm.


Assuntos
Alelos , Oryza/genética , Característica Quantitativa Herdável , Mapeamento Cromossômico , Genes de Plantas , Endogamia , Repetições de Microssatélites , Polimorfismo de Fragmento de Restrição
3.
Theor Appl Genet ; 92(2): 213-24, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24166170

RESUMO

Approximately 170 BC2 plants from a cross between an elite processing inbred (recurrent parent) and the wild species Lycopersicon pimpinellifolium LA1589 (donor parent) were analyzed with segregating molecular markers covering the entire tomato genome. Marker data were used to identify QTLs controlling a battery of horticultural traits measured on BC2F1 and BC3 families derived from the BC2 individuals. Despite its overall inferior appearance, L. pimpinellifolium was shown to possess QTL alleles capable of enhancing most traits important in processing tomato production. QTL-NIL lines, containing specific QTLs modifying fruit size and shape, were subsequently constructed and shown to display the transgressive phenotypes predicted from the original BC2 QTL analysis. The potential of exploiting unadapted and wild germplasm via advanced backcross QTL analysis for the enhancement of elite crop varieties is discussed.

4.
Theor Appl Genet ; 92(8): 935-51, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24166620

RESUMO

Molecular markers were used to map and characterize quantitative trait loci (QTLs) for several characters of agronomic and biological importance in an interspecific backcross of tomato. The parents of the cross were an elite processing inbred Lycopersicon esculentum cv 'M82-1-7' and the closely related red-fruited wild species L. pimpinellifolium (LA1589). A total of 257 BC1 plants were grown under field conditions in Ithaca, New York and scored for 19 quantitative traits. A genetic linkage map was constructed for the same population using 115 RFLP, 3 RAPD and 2 morphological markers that spanned 1,279 cM of the tomato genome with an average interval length of 10.7 cM. A minimum of 54 putatively significant QTLs (P<0.001; LOD> 2.4) were detected for all characters with a range of 1-7 QTLs detected per character. Of the total 54 QTLs 11% had alleles with effects opposite to those predicted by the parental phenotypes. The percentage of phenotypic variation associated with single QTLs ranged from 4% to 47%. Multilocus analysis showed that the cumulative action of all QTLs detected for each trait accounted for 12-59% of the phenotypic variation. The difference in fruit weight was controlled largely by a single major QTL (fw2.2). Digenic epistasis was not evident. Several regions of the genome (including the region near sp on chromosome 6) showed effects on more than one trait. Implications for variety improvement and inferences about the domestication of the cultivated tomato are discussed.

5.
Theor Appl Genet ; 92(8): 957-65, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24166622

RESUMO

A population of 257 BC1 plants was developed from a cross between an elite processing line of tomato (Lycopersicon esculentum cv'M82-1-7') and the closely related wild species L. pimpinellifolium (LA1589). The population was used to construct a genetic linkage map suitable for quantitative trait locus (QTL) analysis to be conducted in different backcross generations. The map comprises 115 RFLP, 3 RAPD and 2 morphological markers that span 1279 cM of the tomato genome with an average distance between markers of 10.7 cM. This map is comparable in length to that of the highdensity RFLP map derived from a L. esculentum x L. pennellii F2 population. The order of the markers in the two maps is also in good agreement, however there are considerable differences in the distribution of recombination along the chromosomes. The segregation of six GATA-containing loci and 47 RAPD markers was also analyzed in subsets of the population. All of the microsatellite loci and 35 (75%) of the RAPDs mapped to clusters associated with centromeric regions.

6.
Theor Appl Genet ; 91(6-7): 994-1000, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24169988

RESUMO

We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.

7.
Genetics ; 132(4): 1141-60, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1360934

RESUMO

High density molecular linkage maps, comprised of more than 1000 markers with an average spacing between markers of approximately 1.2 cM (ca. 900 kb), have been constructed for the tomato and potato genomes. As the two maps are based on a common set of probes, it was possible to determine, with a high degree of precision, the breakpoints corresponding to 5 chromosomal inversions that differentiate the tomato and potato genomes. All of the inversions appear to have resulted from single breakpoints at or near the centromeres of the affected chromosomes, the result being the inversion of entire chromosome arms. While the crossing over rate among chromosomes appears to be uniformly distributed with respect to chromosome size, there is tremendous heterogeneity of crossing over within chromosomes. Regions of the map corresponding to centromeres and centromeric heterochromatin, and in some instances telomeres, experience up to 10-fold less recombination than other areas of the genome. Overall, 28% of the mapped loci reside in areas of putatively suppressed recombination. This includes loci corresponding to both random, single copy genomic clones and transcribed genes (detected with cDNA probes). The extreme heterogeneity of crossing over within chromosomes has both practical and evolutionary implications. Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species.


Assuntos
Genes de Plantas , Solanum tuberosum/genética , Verduras/genética , Centrômero/ultraestrutura , Inversão Cromossômica , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Polimorfismo de Fragmento de Restrição , Recombinação Genética , Telômero/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA