Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 9425, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263132

RESUMO

The post-myocardial infarction heart failure (HF) still carries a huge burden since current therapy is unsuccessful to abrogate poor prognosis. Thus, new approaches are needed, and photobiomodulation therapy (PBMt) may be a way. However, it is not known whether PBMt added to a standard HF therapy provides additional improvement in cardiac remodeling in infarcted rats. This study sought to determine the combined carvedilol-drug and PBMt with low-level laser therapy value in HF. Rats with large infarcts were treated for 30 days. The functional fitness was evaluated using a motorized treadmill. Echocardiography and hemodynamic measurements were used for functional evaluations of left ventricular (LV). ELISA, Western blot and biochemical assays were used to evaluate inflammation and oxidative stress in the myocardium. Carvedilol and PBMt had a similar action in normalizing pulmonary congestion and LV end-diastolic pressure, attenuating LV dilation, and improving LV systolic function. Moreover, the application of PBMt to carvedilol-treated rats inhibited myocardial hypertrophy and improved +dP/dt of LV. PBMt alone prevented inflammation with a superior effect than carvedilol. Carvedilol and PBMt normalized 4-hydroxynonenal (a lipoperoxidation marker) levels in the myocardium. However, importantly, the addition of PBMt to carvedilol attenuated oxidized protein content and triggered a high activity of the anti-oxidant catalase enzyme. In conclusion, these data show that the use of PBMt plus carvedilol therapy results in a significant additional improvement in HF in a rat model of myocardial infarction. These beneficial effects were observed to be due, at least in part, to decreased myocardial inflammation and oxidative stress.


Assuntos
Carvedilol/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Terapia com Luz de Baixa Intensidade , Estresse Oxidativo , Animais , Carvedilol/farmacologia , Catalase/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Feminino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/radioterapia , Hemodinâmica/efeitos dos fármacos , Inflamação/prevenção & controle , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
2.
Lasers Med Sci ; 33(2): 343-351, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29170901

RESUMO

This study evaluated the role of the phototherapy and exercise training (EXT) as well as the combined treatment in general symptoms, pain, and quality of life in women suffering from fibromyalgia (FM). A total of 160 women were enrolled and measures were carried out in two sets: it was sought to identify the acute effect for a single phototherapy and EXT session (Set 1); long-term effect (10 weeks) of the interventions (Set 2). Phototherapy irradiation was performed at 11 locations in their bodies, employing a cluster with nine diodes (one super-pulsed infrared 905 nm, four light-emitting diodes [LEDs] of 640 nm, and four LEDs of 875 nm, 39.3 J per location). Algometry and VAS instrument were applied to evaluate pain. The FM symptoms were evaluated with Fibromyalgia Impact Questionnaire (FIQ) and Research Diagnostic Criteria (RDC) instruments. Quality of life was assessed through SF-36 survey. Set 1: pain threshold was improved with the phototherapy, and EXT improved the pain threshold for temporomandibular joint (right and left body side) and occipital site (right body side). Set 2: there was improved pain threshold in several tender points with the phototherapy and EXT. There was an overlap of therapies to reduce the tender point numbers, anxiety, depression, fatigue, sleep, and difficulty sleeping on FIQ/RDC scores. Moreover, quality of life was improved with both therapies. The phototherapy and EXT improved the pain threshold in FM women. A more substantial effect was noticed for the combined therapy, in which pain relief was accomplished by improving VAS and FIQ scores as well as quality of life.


Assuntos
Terapia por Exercício , Fibromialgia/radioterapia , Terapia com Luz de Baixa Intensidade , Adulto , Terapia Combinada , Feminino , Humanos , Medição da Dor , Limiar da Dor , Qualidade de Vida , Inquéritos e Questionários , Resultado do Tratamento
3.
Photomed Laser Surg ; 35(11): 595-603, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29099680

RESUMO

BACKGROUND: Photobiomodulation therapy (PBMT) has recently been used to alleviate postexercise muscle fatigue and enhance recovery, demonstrating positive results. A previous study by our research group demonstrated the optimal dose for an infrared wavelength (810 nm), but the outcomes could be optimized further with the determination of the optimal output power. OBJECTIVE: The aim of the present study was to evaluate the effects of PBMT (through low-level laser therapy) on postexercise skeletal muscle recovery and identify the best output power. MATERIALS AND METHODS: A randomized, placebo-controlled double-blind clinical trial was conducted with the participation of 28 high-level soccer players. PBMT was applied before the eccentric contraction protocol with a cluster with five diodes, 810 nm, dose of 10 J, and output power of 100, 200, 400 mW per diode or placebo at six sites of knee extensors. Maximum isometric voluntary contraction (MIVC), delayed onset muscle soreness (DOMS) and biochemical markers related to muscle damage (creatine kinase and lactate dehydrogenase), inflammation (IL-1ß, IL-6, and TNF-α), and oxidative stress (catalase, superoxide dismutase, carbonylated proteins, and thiobarbituric acid) were evaluated before isokinetic exercise, as well as at 1 min and at 1, 24, 48, 72, and 96 h, after the eccentric contraction protocol. RESULTS: PBMT increased MIVC and decreased DOMS and levels of biochemical markers (p < 0.05) with the power output of 100 and 200 mW, with better results for the power output of 100 mW. CONCLUSIONS: PBMT with 100 mW power output per diode (500 mW total) before exercise achieves best outcomes in enhancing muscular performance and postexercise recovery. Another time it has been demonstrated that more power output is not necessarily better.


Assuntos
Exercício Físico/fisiologia , Terapia com Luz de Baixa Intensidade/métodos , Fadiga Muscular/fisiologia , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/fisiologia , Músculo Esquelético/efeitos da radiação , Recuperação de Função Fisiológica/fisiologia , Recuperação de Função Fisiológica/efeitos da radiação , Futebol/fisiologia , Adolescente , Adulto , Biomarcadores/sangue , Método Duplo-Cego , Humanos , Masculino
4.
Front Physiol ; 8: 23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194115

RESUMO

Low-level laser therapy (LLLT) has been targeted as a promising approach that can mitigate post-infarction cardiac remodeling. There is some interesting evidence showing that the beneficial role of the LLLT could persist long-term even after the end of the application, but it remains to be systematically evaluated. Therefore, the present study aimed to test the hypothesis that LLLT beneficial effects in the early post-infarction cardiac remodeling could remain in overt heart failure even with the disruption of irradiations. Female Wistar rats were subjected to the coronary occlusion to induce myocardial infarction or Sham operation. A single LLLT application was carried out after 60 s and 3 days post-coronary occlusion, respectively. Echocardiography was performed 3 days and at the end of the experiment (5 weeks) to evaluate cardiac function. After the last echocardiographic examination, LV hemodynamic evaluation was performed at baseline and on sudden afterload increases. Compared with the Sham group, infarcted rats showed increased systolic and diastolic internal diameter as well as a depressed shortening fraction of LV. The only benefit of the LLLT was a higher shortening fraction after 3 days of infarction. However, treated-LLLT rats show a lower shortening fraction in the 5th week of study when compared with Sham and non-irradiated rats. A worsening of cardiac function was confirmed in the hemodynamic analysis as evidenced by the higher LV end-diastolic pressure and lower +dP/dt and -dP/dt with five weeks of study. Cardiac functional reserve was also impaired by infarction as evidenced by an attenuated response of stroke work index and cardiac output to a sudden afterload stress, without LLLT repercussions. No significant differences were found in the myocardial expression of Akt1/VEGF pathway. Collectively, these findings illustrate that LLLT improves LV systolic function in the early post-infarction cardiac remodeling. However, this beneficial effect may be dependent on the maintenance of phototherapy. Long-term studies with LLLT application are needed to establish whether these effects ultimately translate into improved cardiac remodeling.

5.
J Strength Cond Res ; 30(12): 3329-3338, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27050245

RESUMO

Pinto, HD, Vanin, AA, Miranda, EF, Tomazoni, SS, Johnson, DS, Albuquerque-Pontes, GM, de Oliveira Aleixo Junior, I, Grandinetti, VdS, Casalechi, HL, de Tarso Camillo de Carvalho, P, and Pinto Leal Junior. Photobiomodulation therapy improves performance and accelerates recovery of high-level rugby players in field test: A randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Cond Res 30(12): 3329-3338, 2016-Although growing evidence supports the use of photobiomodulation therapy (PBMT) for performance and recovery enhancement, there have only been laboratory-controlled studies. Therefore, the aim of this study was to analyze the effects of PBMT in performance and recovery of high-level rugby players during an anaerobic field test. Twelve male high-level rugby athletes were recruited in this randomized, crossover, double-blinded, placebo-controlled trial. No interventions were performed before the Bangsbo sprint test (BST) at familiarization phase (week 1); at weeks 2 and 3, pre-exercise PBMT or placebo were randomly applied to each athlete. Photobiomodulation therapy irradiation was performed at 17 sites of each lower limb, employing a cluster with 12 diodes (4 laser diodes of 905 nm, 4 light emitting diodes [LEDs] of 875 nm, and 4 LEDs of 640 nm, 30 J per site, manufactured by Multi Radiance Medical). Average time of sprints, best time of sprints, and fatigue index were obtained from BST. Blood lactate levels were assessed at baseline, and at 3, 10, 30, and 60 minutes after BST. Athletes' perceived fatigue was also assessed through a questionnaire. Photobiomodulation therapy significantly (p ≤ 0.05) improved the average time of sprints and fatigue index in BST. Photobiomodulation therapy significantly decreased percentage of change in blood lactate levels (p ≤ 0.05) and perceived fatigue (p ≤ 0.05). Pre-exercise PBMT with the combination of super-pulsed laser (low-level laser), red LEDs, and infrared LEDs can enhance performance and accelerate recovery of high-level rugby players in field test. This opens a new avenue for wide use of PBMT in real clinical practice in sports settings.


Assuntos
Desempenho Atlético/fisiologia , Fadiga/reabilitação , Futebol Americano/fisiologia , Terapia com Luz de Baixa Intensidade , Adulto , Estudos Cross-Over , Método Duplo-Cego , Fadiga/fisiopatologia , Humanos , Ácido Láctico/sangue , Extremidade Inferior/fisiologia , Masculino , Fadiga Muscular , Músculo Esquelético/fisiopatologia , Esforço Físico , Recuperação de Função Fisiológica , Corrida/fisiologia , Adulto Jovem
6.
J Athl Train ; 51(2): 129-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26942660

RESUMO

CONTEXT: Skeletal muscle fatigue and exercise performance are novel areas of research and clinical application in the photobiomodulation field, and positive outcomes have been reported in several studies; however, the optimal measures have not been fully established. OBJECTIVE: To assess the acute effect of photobiomodulation therapy (PBMT) combining superpulsed lasers (low-level laser therapy) and light-emitting diodes (LEDs) on muscle performance during a progressive cardiopulmonary treadmill exercise test. DESIGN: Crossover study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: Twenty untrained male volunteers (age = 26.0 ± 6.0 years, height = 175.0 ± 10.0 cm, mass = 74.8 ± 10.9 kg). INTERVENTION(S): Participants received PBMT with either combined superpulsed lasers and LED (active PBMT) or placebo at session 1 and the other treatment at session 2. All participants completed a cardiopulmonary test on a treadmill after each treatment. For active PBMT, we performed the irradiation at 17 sites on each lower limb (9 on the quadriceps, 6 on the hamstrings, and 2 on the gastrocnemius muscles), using a cluster with 12 diodes (four 905-nm superpulsed laser diodes with an average power of 0.3125 mW, peak power of 12.5 W for each diode, and frequency of 250 Hz; four 875-nm infrared LED diodes with an average power of 17.5 mW; and four 640-nm red LED diodes with an average power of 15 mW) and delivering a dose of 30 J per site. MAIN OUTCOME MEASURE(S): Distance covered, time until exhaustion, pulmonary ventilation, and dyspnea score. RESULTS: The distance covered (1.96 ± 0.30 versus 1.84 ± 0.40 km, t19 = 2.119, P < .001) and time until exhaustion on the cardiopulmonary test (780.2 ± 91.0 versus 742.1 ± 94.0 seconds, t19 = 3.028, P < .001) was greater after active PBMT than after placebo. Pulmonary ventilation was greater (76.4 ± 21.9 versus 74.3 ± 19.8 L/min, t19 = 0.180, P = .004) and the score for dyspnea was lower (3.0 [interquartile range = 0.5-9.0] versus 4.0 [0.0-9.0], U = 184.000, P < .001) after active PBMT than after placebo. CONCLUSIONS: The combination of lasers and LEDs increased the time, distance, and pulmonary ventilation and decreased the score of dyspnea during a cardiopulmonary test.


Assuntos
Tolerância ao Exercício/fisiologia , Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Ventilação Pulmonar/fisiologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Teste de Esforço , Humanos , Masculino , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem
7.
Lasers Med Sci ; 30(5): 1575-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987340

RESUMO

From the very first reports describing the method of action of phototherapy, the effects have been considered to be the result of photochemical and photophysical interactions between the absorbed photons and tissue and not related to secondary changes in tissue or skin temperature. However, thermal effects have been recently reported in dark pigmented skin when irradiated with single wavelengths of 810 and 904 nm of low-level laser therapy (LLLT) devices even with doses that do not exceed those recommended by the World Association of Laser Therapy (WALT). The aim of this study was to evaluate the thermal impact during the concurrent use of pulsed red and infrared LEDs and super-pulsed lasers when applied to light, medium, and dark pigmented human skin with doses typically seen in clinical practice. The study evaluated the skin temperature of 42 healthy volunteers (males and females 18 years or older, who presented different pigmentations, stratified according to Von Luschan's chromatic scale) via the use of a thermographic camera. Active irradiation was performed with using the multi-diode phototherapy cluster containing four 905-nm super-pulsed laser diodes (frequency set to 250 Hz), four 875-nm infrared-emitting diodes, and four 640-nm LEDs (manufactured by Multi Radiance Medical™, Solon, OH, USA). Each of the four doses were tested on each subject: placebo, 0 J (60 s); 10 J (76 s); 30 J (228 s); and 50 J (380 s). Data were collected during the last 5 s of each dose of irradiation and continued for 1 min after the end of each irradiation. No significant skin temperature increases were observed among the different skin color groups (p > 0.05), age groups (p > 0.05), or gender groups (p > 0.05). Our results indicate that the concurrent use of super-pulsed lasers and pulsed red and infrared LEDs can be utilized in patients with all types of skin pigmentation without concern over safety or excessive tissue heating. Additionally, the doses and device utilized in present study have demonstrated positive outcomes in prior clinical trials. Therefore, it can be concluded that the effects seen by the concurrent use of multiple wavelengths and light sources were the result of desirable photobiomodulation effect and not related to thermal influence.


Assuntos
Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade , Pigmentação da Pele , Temperatura Cutânea/efeitos da radiação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Lasers Med Sci ; 29(6): 1967-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24942380

RESUMO

Recent studies with phototherapy have shown positive results in enhancement of performance and improvement of recovery when applied before exercise. However, several factors still remain unknown such as therapeutic windows, optimal treatment parameters, and effects of combination of different light sources (laser and LEDs). The aim of this study was to evaluate the effects of phototherapy with the combination of different light sources on skeletal muscle performance and post-exercise recovery, and to establish the optimal energy dose. A randomized, double-blinded, placebo-controlled trial with participation of 40 male healthy untrained volunteers was performed. A single phototherapy intervention was performed immediately after pre-exercise (baseline) maximum voluntary contraction (MVC) with a cluster of 12 diodes (4 of 905 nm lasers-0.3125 mW each, 4 of 875 nm LEDs-17.5 mW each, and 4 of 670 nm LEDs-15 mW each- manufactured by Multi Radiance Medical™) and dose of 10, 30, and 50 J or placebo in six sites of quadriceps. MVC, delayed onset muscle soreness (DOMS), and creatine kinase (CK) activity were analyzed. Assessments were performed before, 1 min, 1, 24, 48, 72, and 96 h after eccentric exercise protocol employed to induce fatigue. Phototherapy increased (p < 0.05) MVC was compared to placebo from immediately after to 96 h after exercise with 10 or 30 J doses (better results with 30 J dose). DOMS was significantly decreased compared to placebo (p < 0.05) with 30 J dose from 24 to 96 h after exercise, and with 50 J dose from immediately after to 96 h after exercise. CK activity was significantly decreased (p < 0.05) compared to placebo with all phototherapy doses from 1 to 96 h after exercise (except for 50 J dose at 96 h). Pre-exercise phototherapy with combination of low-level laser and LEDs, mainly with 30 J dose, significantly increases performance, decreases DOMS, and improves biochemical marker related to skeletal muscle damage.


Assuntos
Exercício Físico/fisiologia , Terapia com Luz de Baixa Intensidade/métodos , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/fisiologia , Adulto , Biomarcadores , Método Duplo-Cego , Humanos , Lasers , Masculino , Contração Muscular , Fadiga Muscular/fisiologia , Músculo Quadríceps/efeitos da radiação , Fatores de Tempo , Adulto Jovem
9.
Trials ; 15: 69, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24576321

RESUMO

BACKGROUND: Recent studies involving phototherapy applied prior to exercise have demonstrated positive results regarding the attenuation of muscle fatigue and the expression of biochemical markers associated with recovery. However, a number of factors remain unknown, such as the ideal dose and application parameters, mechanisms of action and long-term effects on muscle recovery. The aims of the proposed project are to evaluate the long-term effects of low-level laser therapy on post-exercise musculoskeletal recovery and identify the best dose andapplication power/irradiation time. DESIGN AND METHODS: A double-blind, randomized, placebo-controlled clinical trial with be conducted. After fulfilling the eligibility criteria, 28 high-performance athletes will be allocated to four groups of seven volunteers each. In phase 1, the laser power will be 200 mW and different doses will be tested: Group A (2 J), Group B (6 J), Group C (10 J) and Group D (0 J). In phase 2, the best dose obtained in phase 1 will be used with the same distribution of the volunteers, but with different powers: Group A (100 mW), Group B (200 mW), Group C (400 mW) and Group D (0 mW). The isokinetic test will be performed based on maximum voluntary contraction prior to the application of the laser and after the eccentric contraction protocol, which will also be performed using the isokinetic dynamometer. The following variables related to physical performance will be analyzed: peak torque/maximum voluntary contraction, delayed onset muscle soreness (algometer), biochemical markers of muscle damage, inflammation and oxidative stress. DISCUSSION: Our intention, is to determine optimal laser therapy application parameters capable of slowing down the physiological muscle fatigue process, reducing injuries or micro-injuries in skeletal muscle stemming from physical exertion and accelerating post-exercise muscle recovery. We believe that, unlike drug therapy, LLLT has a biphasic dose-response pattern. TRIAL REGISTRATION: The protocol for this study is registered with the Protocol Registry System, ClinicalTrials.gov identifier NCT01844271.


Assuntos
Exercício Físico , Terapia com Luz de Baixa Intensidade/métodos , Contração Muscular/efeitos da radiação , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Doses de Radiação , Projetos de Pesquisa , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Brasil , Protocolos Clínicos , Método Duplo-Cego , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Estresse Oxidativo , Recuperação de Função Fisiológica , Fatores de Tempo , Resultado do Tratamento
10.
Lasers Med Sci ; 29(5): 1617-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24651950

RESUMO

This study aimed to evaluate the effects of low-level laser therapy (LLLT) immediately before tetanic contractions in skeletal muscle fatigue development and possible tissue damage. Male Wistar rats were divided into two control groups and nine active LLLT groups receiving one of three different laser doses (1, 3, and 10 J) with three different wavelengths (660, 830, and 905 nm) before six tetanic contractions induced by electrical stimulation. Skeletal muscle fatigue development was defined by the percentage (%) of the initial force of each contraction and time until 50 % decay of initial force, while total work was calculated for all six contractions combined. Blood and muscle samples were taken immediately after the sixth contraction. Several LLLT doses showed some positive effects on peak force and time to decay for one or more contractions, but in terms of total work, only 3 J/660 nm and 1 J/905 nm wavelengths prevented significantly (p < 0.05) the development of skeletal muscle fatigue. All doses with wavelengths of 905 nm but only the dose of 1 J with 660 nm wavelength decreased creatine kinase (CK) activity (p < 0.05). Qualitative assessment of morphology revealed lesser tissue damage in most LLLT-treated groups, with doses of 1-3 J/660 nm and 1, 3, and 10 J/905 nm providing the best results. Optimal doses of LLLT significantly delayed the development skeletal muscle performance and protected skeletal muscle tissue against damage. Our findings also demonstrate that optimal doses are partly wavelength specific and, consequently, must be differentiated to obtain optimal effects on development of skeletal muscle fatigue and tissue preservation. Our findings also lead us to think that the combined use of wavelengths at the same time can represent a therapeutic advantage in clinical settings.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Contração Muscular/efeitos da radiação , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/patologia , Músculo Esquelético/efeitos da radiação , Tetania/fisiopatologia , Tetania/terapia , Animais , Fenômenos Biomecânicos/efeitos da radiação , Creatina Quinase/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Masculino , Músculo Esquelético/fisiopatologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...