Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 21(12): 2179-2192, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36178669

RESUMO

The phenomenon of photoacidity, i.e., an increase in acidity by several orders of magnitude upon electronic excitation, is frequently encountered in aromatic alcohols capable of transferring a proton to a suitable acceptor. A promising new class of neutral super-photoacids based on pyranine derivatives has been shown to exhibit pronounced solvatochromic effects. To disclose the underlying mechanisms contributing to excited-state proton transfer (ESPT) and the temporal characteristics of solvation and ESPT, we scrutinize the associated ultrafast dynamics of the strongest photoacid of this class, namely tris(1,1,1,3,3,3-hexafluoropropan-2-yl)8-hydroxypyrene-1,3,6-trisulfonate, in acetoneous environment, thereby finding experimental evidence for ESPT even under these adverse conditions for proton transfer. Juxtaposing results from time-correlated single-photon counting and femtosecond transient absorption measurements combined with a complete decomposition of all signal components, i.e., absorption of ground and excited states as well as stimulated emission, we disclose dynamics of solvation, rotational diffusion, and radiative relaxation processes in acetone and identify the relevant steps of ESPT along with the associated time scales.


Assuntos
Prótons
2.
Anal Chem ; 94(16): 6112-6119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35426308

RESUMO

Boronic acids are widely used for labeling catechols and carbohydrates in analytical (bio)chemistry due to their high binding affinities for diols. Here, we present two asymmetrically substituted Bodipy dyes with a boronic acid at the ß-position (BBB). We present a green-emitting BBB, gBBB, and, by expanding the conjugated system of the Bodipy core at α-position, a red-emitting rBBB. Especially, gBBB shows a bathochromic shift of the electronic spectra upon binding to saccharides and polyols, whereas the fluorescence lifetime of rBBB is more sensitive to hydroxy-ligand binding. Moreover, gBBB constantly shows higher binding affinities than rBBB, reaching Kb ≈ 103 M-1 at pH 8.5 for fructose. Finally, time-resolved fluorescence anisotropy allows to distinguish the number of saccharide units of oligosaccharides as the bond along the transition dipole moment ensures that the fluorescence anisotropy only decays due to the rotational diffusion of labeled carbohydrates. ß-substituted BODIPY dyes are, thus, foreseen as fluorescence anisotropy labels for macromolecule sizing, where conventional fluorophores fail to discriminate due to the chemical similarity of recognition sites.


Assuntos
Ácidos Borônicos , Corantes Fluorescentes , Fosfotransferases/química , Compostos de Boro , Ácidos Borônicos/química , Carboidratos , Polarização de Fluorescência , Corantes Fluorescentes/química , Fosfotransferases/análise
3.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885932

RESUMO

Opal films with their vivid structural colors represent a field of tremendous interest and obtained materials offer the possibility for many applications, such as optical sensors or anti-counterfeiting materials. A convenient method for the generation of opal structures relies on the tailored design of core-interlayer-shell (CIS) particles. Within the present study, elastomeric opal films were combined with stimuli-responsive photoacids to further influence the optical properties of structurally colored materials. Starting from cross-linked polystyrene (PS) core particles featuring a hydroxy-rich and polar soft shell, opal films were prepared by application of the melt-shear organization technique. The photoacid tris(2,2,2-trifluoroethyl) 8-hydroxypyrene-1,3,6-trisulfonate (TFEHTS) could be conveniently incorporated during freeze-drying the particle dispersion and prior to the melt-shear organization. Furthermore, the polar opal matrix featuring hydroxylic moieties enabled excited-state proton transfer (ESPT), which is proved by spectroscopic evaluation. Finally, the influence of the photoacid on the optical properties of the 3-dimensional colloidal crystals were investigated within different experimental conditions. The angle dependence of the emission spectra unambiguously shows the selective suppression of the photoacid's fluorescence in its deprotonated state.

4.
J Phys Chem Lett ; 12(6): 1683-1689, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33560847

RESUMO

Despite the outstanding relevance of proton transfer reactions, investigations of the solvent dependence on the elementary step are scarce. We present here a probe system of a pyrene-based photoacid and a phosphine oxide, which forms stable hydrogen-bonded complexes in aprotic solvents of a broad polarity range. By using a photoacid, an excited-state proton transfer (ESPT) along the hydrogen bond can be triggered by a photon and observed via fluorescence spectroscopy. Two emission bands could be identified and assigned to the complexed photoacid (CPX) and the hydrogen-bonded ion pair (HBIP) by a solvatochromism analysis based on the Lippert-Mataga model. The latter indicates that the difference in the change of the permanent dipole moment of the two species upon excitation is ∼3 D. This implies a displacement of the acidic hydrogen by ∼65 pm, which is in quantitative agreement with a change of the hydrogen bond configuration from O-H···O to -O···H-O+.

5.
Chemistry ; 25(1): 173-176, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30378721

RESUMO

Permethylated disila[2]metallocenophanes of silicon, germanium, tin, lead, 2 a-d, (tetrelocenophanes) and antimony, 3 a,b, (pnictogenocenophanes) are described. In the case of antimony, a chloro-substituted stibonocenophane, 3 a, as well as cationic stibonocenophanium tetrachloroaluminate and tetraphenylborate salts, 3 b[X] (X=[AlCl4 ], [BPh4 ]), were synthesized. These represent the first examples of metallocenophanes of any Group 15 element. All compounds were studied in solution and in the solid state. Without exception the ansa-bridge exerts a strong influence on the bending angle of the two Cp-ligands. For disila[2]plumbocenophane, 2 d, its reactivity towards Group 15 halides was probed. Treatment of disila[2]plumbocenophane, 2 d, with two equivalents of phosphorus(III) chloride or arsenic(III) chloride, results in a ring-opening reaction and gives the bis(dihalopnictogenyl)-substituted products, 4 a,b.

6.
J Phys Chem A ; 122(46): 9025-9030, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30359029

RESUMO

Photoacids are the most convenient way to deliver protons on demand. So far, their photoacidity allows for studying excited-state proton transfer (ESPT) only to protic or strongly basic solvent molecules. The strongest superphotoacids known so far exhibit excited-state lifetimes of their conjugate base on the order of 100 ps before recapturing the proton again. Here, we describe how we developed a new aminopyrene-based superphotoacid with an excited-state lifetime of its conjugate base of several nanoseconds. It will be shown by fluorescence titration and via Förster cycle that the excited-state acidity is as high as concentrated sulfuric acid and thus exceeding any previous photoacidity by several orders of magnitude. Its outstanding chemical stability and fluorescent properties make it suitable for time-resolved proton-transfer studies in concentrated mineral acids and organic solvents of low basicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...