Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(11): 4653-4659, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30802045

RESUMO

Mixed oxide hydride anion systems constitute a novel class of materials exhibiting intriguing properties such as solid-state hydride ion conduction and fast anion exchange. In this contribution we derive the kinetics of hydride ion transport in a mixed oxide-hydride system, SrTiO3- xH x, through isotope exchange and depth profiling. Density functional theory (DFT) calculations indicate that migration of H- to neighboring vacant oxygen lattice sites is fast, but that long-range transport is impeded by slow reorganization of the oxygen sublattice. From measured hydride tracer-diffusion coefficients and the correlation factors derived from DFT, we are able to derive the hydrogen self-diffusion coefficients in SrTiO3- xH x. More generally, the explicit description of hydride ion transport in SrTiO3- xH x through combination of experimental and computational methods reported in this work can be applied to explore anion diffusion in other mixed anion systems.

2.
Nanotechnology ; 30(22): 225702, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30743257

RESUMO

Functionalizing transparent conducting oxides (TCOs) is an intriguing approach to expand the tunability and operation of optoelectronic devices. For example, forming nanoparticles that act as quantum wells or barriers in zinc oxide (ZnO), one of the main TCOs today, may expand its optical and electronic tunability. In this work, 800 keV Ge ions have been implanted at a dose of 1 × 1016 cm-2 into crystalline ZnO. After annealing at 1000 °C embedded disk-shaped particles with diameters up to 100 nm are formed. Scanning transmission electron microscopy shows that these are particles of the trigonal Zn2GeO4 phase. The particles are terminated by atomically sharp facets of the type {11 [Formula: see text] 0}, and the interface between the matrix and particles is decorated with misfit dislocations in order to accommodate the lattice mismatch between the two crystals. Electron energy loss spectroscopy has been employed to measure the band gap of individual nanoparticles, showing an onset of band-to-band transitions at 5.03 ± 0.02 eV. This work illustrates the advantages of using STEM characterization methods, where information of structure, growth, and properties can be directly obtained.

3.
Ultramicroscopy ; 184(Pt A): 39-45, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843183

RESUMO

Band gap variations in thin film structures, across grain boundaries, and in embedded nanoparticles are of increasing interest in the materials science community. As many common experimental techniques for measuring band gaps do not have the spatial resolution needed to observe these variations directly, probe-corrected Scanning Transmission Electron Microscope (STEM) with monochromated Electron Energy-Loss Spectroscopy (EELS) is a promising method for studying band gaps of such features. However, extraction of band gaps from EELS data sets usually requires heavy user involvement, and makes the analysis of large data sets challenging. Here we develop and present methods for automated extraction of band gap maps from large STEM-EELS data sets with high spatial resolution while preserving high accuracy and precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...