Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Brain Commun ; 6(2): fcae068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560516

RESUMO

Spatial learning and navigation are supported by distinct memory systems in the human brain such as the hippocampus-based navigational system and the striatum-cortex-based system involved in motor sequence, habit and reversal learning. Here, we studied the role of subthalamic circuits in hippocampus-associated spatial memory and striatal-associated spatial reversal learning formation in patients with Parkinson's disease, who underwent a deep brain stimulation of the subthalamic nucleus. Deep brain stimulation patients (Parkinson's disease-subthalamic nucleus: n = 26) and healthy subjects (n = 15) were tested in a novel experimental spatial memory task based on the Morris water maze that assesses both hippocampal place memory as well as spatial reversal learning. All subjects were trained to navigate to a distinct spatial location hidden within the virtual environment during 16 learning trials in a subthalamic nucleus Stim-On condition. Patients were then randomized into two groups with either a deep brain stimulation On or Off condition. Four hours later, subjects were retested in a delayed recall and reversal learning condition. The reversal learning was realized with a new hidden location that should be memorized during six consecutive trials. The performance was measured by means of an index indicating the improvement during the reversal learning. In the delayed recall condition, neither patients, healthy subjects nor the deep brain stimulation On- versus Off groups showed a difference in place memory performance of the former trained location. In the reversal learning condition, healthy subjects (reversal index 2.0) and patients in the deep brain stimulation On condition (reversal index 1.6) showed a significant improvement. However, patients in the deep brain stimulation Off condition (reversal index 1.1) performed significantly worse and did not improve. There were no differences between all groups in a final visual guided navigation task with a visible target. These results suggest that deep brain stimulation of subthalamic nucleus restores spatial reversal learning in a virtual navigation task in patients with Parkinson's disease and gives insight into the neuromodulation effects on cognition of subthalamic circuits in Parkinson's disease.

2.
Neurobiol Dis ; 190: 106378, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103701

RESUMO

Spatial navigation critically underlies hippocampal-entorhinal circuit function that is early affected in Alzheimer's disease (AD). There is growing evidence that AD pathophysiology dynamically interacts with the sleep/wake cycle impairing hippocampal memory. To elucidate sleep-dependent consolidation in a cohort of symptomatic AD patients (n = 12, 71.25 ± 2.16 years), we tested hippocampal place learning by means of a virtual reality task and verbal memory by a word-pair association task before and after a night of sleep. Our results show an impaired overnight memory retention in AD compared with controls in the verbal task, together with a significant reduction of sleep spindle activity (i.e., lower amplitude of fast sleep spindles, p = 0.016) and increased duration of the slow oscillation (SO; p = 0.019). Higher spindle density, faster down-to-upstate transitions within SOs, and the time delay between SOs and nested spindles predicted better memory performance in healthy controls but not in AD patients. Our results show that mnemonic processing and memory consolidation in AD is slightly impaired as reflected by dysfunctional oscillatory dynamics and spindle-SO coupling during NonREM sleep. In this translational study based on experimental paradigms in animals and extending previous work in healthy aging and preclinical disease stages, our results in symptomatic AD further deepen the understanding of the memory decline within a bidirectional relationship of sleep and AD pathology.


Assuntos
Doença de Alzheimer , Consolidação da Memória , Humanos , Consolidação da Memória/fisiologia , Polissonografia , Sono/fisiologia , Memória/fisiologia , Transtornos da Memória/etiologia
3.
Parkinsonism Relat Disord ; 112: 105457, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245277

RESUMO

BACKGROUND: Questionable signs of dystonia are a common finding in patients with essential tremor (ET). Brain structural alterations in ET patients plus dystonic soft signs (ET + ds) in comparison to ET patients without dystonic soft signs (ET-ds) or patients with tremor associated with manifest dystonia (TAWD) have not been examined yet. Therefore, our study aims to explore alterations of brain grey matter in patients with ET + ds. METHODS: A total of 68 elderly patients with ET-ds (n = 32), ET + ds (n = 20) or idiopathic cervical dystonia with dystonia associated action tremor of the upper limbs (TAWD, n = 16) and 42 age-matched healthy controls underwent a clinical and electrophysiological assessment and 3T MRI. For grey matter alterations T1 MRI images were analysed by voxel-based morphometry. Additionally, regression analyses with clinical parameters (tremor frequency, severity and disease duration) were performed. RESULTS: VBM showed a significant increase of grey matter in the right lentiform nucleus in ET + ds and TAWD compared to HC and ET-ds. Further, an increase of cortical grey matter in the middle frontal gyrus in ET + ds was shown. The hypertrophy of the lentiform nucleus in ET + ds was correlated with disease severity and duration. CONCLUSION: Patients with ET + ds showed grey matter brain structural alterations similar to TAWD. Our findings suggest an involvement of the basal ganglia-cortical loop in ET + ds which may indicate a pathophysiological similarity with TAWD rather than ET.


Assuntos
Distúrbios Distônicos , Tremor Essencial , Torcicolo , Humanos , Idoso , Tremor Essencial/diagnóstico , Substância Cinzenta/diagnóstico por imagem , Tremor , Encéfalo , Torcicolo/complicações , Imageamento por Ressonância Magnética
4.
Mov Disord Clin Pract ; 10(3): 472-476, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949782

RESUMO

Background: Three-dimensional (3D) human body estimation from common photographs is an evolving method in the field of computer vision. It has not yet been evaluated on postural disorders. We generated 3D models from 2-dimensional pictures of camptocormia patients to measure the bending angle of the trunk according to recommendations in the literature. Methods: We used the Part Attention Regressor algorithm to generate 3D models from photographs of camptocormia patients' posture and validated the resulting angles against the gold standard. A total of 2 virtual human models with camptocormia were generated to evaluate the performance depending on the camera angle. Results: The bending angle assessment using the 3D mesh correlated highly with the gold standard (R = 0.97, P < 0.05) and is robust to deviations of the camera angle. Conclusions: The generation of 3D models offers a new method for assessing postural disorders. It is automated and robust to nonperfect pictures, and the result offers a comprehensive analysis beyond the bending angle.

5.
Exp Brain Res ; 240(7-8): 2097-2107, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763033

RESUMO

Hypersexuality in medicated patients with PD is caused by an increased influence of motivational drive areas and a decreased influence of inhibitory control areas due to dopaminergic medication. In this pilot study, we test a newly developed paradigm investigating the influence of dopaminergic medication on brain activation elicited by sexual pictures with and without inhibitory contextual framing. Twenty PD patients with and without hypersexuality were examined with fMRI either OFF or ON standardized dopaminergic medication. The paradigm consisted of a priming phase where either a neutral context or an inhibitory context was presented. This priming phase was either followed by a sexual or a neutral target. Sexual, compared to neutral pictures resulted in a BOLD activation of various brain regions implicated in sexual processing. Hypersexual PD patients showed increased activity compared to PD controls in these regions. There was no relevant effect of medication between the two groups. The inhibitory context elicited less activation in inhibition-related areas in hypersexual PD, but had no influence on the perception of sexual cues. The paradigm partially worked: reactivity of motivational brain areas to sexual cues was increased in hypersexual PD and inhibitory contextual framing lead to decreased activation of inhibitory control areas in PD. We could not find a medication effect and the length of the inhibitory stimulus was not optimal to suppress reactivity to sexual cues. Our data provide new insights into the mechanisms of hypersexuality and warrant a replication with a greater cohort and an optimized stimulus length in the future.


Assuntos
Doença de Parkinson , Dopaminérgicos/farmacologia , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Projetos Piloto , Comportamento Sexual
6.
Front Hum Neurosci ; 16: 829576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370576

RESUMO

Objective: In this study we used functional magnetic resonance imaging (fMRI) to investigate whether motor imagery (MI) of handwriting and circle drawing activates a similar handwriting network as writing and drawing itself. Methods: Eighteen healthy right-handed participants wrote the German word "Wellen" and drew continuously circles in a sitting (vertical position) and lying position (horizontal position) to capture kinematic handwriting parameters such as velocity, pressure and regularity of hand movements. Afterward, they performed the same tasks during fMRI in a MI and an executed condition. Results: The kinematic analysis revealed a general correlation of handwriting parameters during sitting and lying except of pen pressure during drawing. Writing compared to imagined writing was accompanied by an increased activity of the ipsilateral cerebellum and the contralateral sensorimotor cortex. Executed compared to imagined drawing revealed elevated activity of a fronto-parieto-temporal network. By contrasting writing and drawing directly, executed writing induced an enhanced activation of the left somatosensory and premotor area. The comparison of the MI of these tasks revealed a higher involvement of occipital activation during imagined writing. Conclusion: The kinematic results pointed to a high comparability of writing in a vertical and horizontal position. Overall, we observed highly overlapping cortical activity except of a higher involvement of motor control areas during motor execution. The sparse difference between writing and drawing can be explained by highly automatized writing in healthy individuals.

7.
Mov Disord ; 37(2): 291-301, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112384

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) effectively treats motor symptoms and quality of life (QoL) of advanced and fluctuating early Parkinson's disease. Little is known about the relation between electrode position and changes in symptom control and ultimately QoL. OBJECTIVES: The relation between the stimulated part of the STN and clinical outcomes, including the motor score of the Unified Parkinson's Disease Rating Scale (UPDRS) and the quality-of-life questionnaire, was assessed in a subcohort of the EARLYSTIM study. METHODS: Sixty-nine patients from the EARLYSTIM cohort who underwent DBS, with a comprehensive clinical characterization before and 24 months after surgery, were included. Intercorrelations of clinical outcome changes, correlation between the affected functional parts of the STN, and changes in clinical outcomes were investigated. We further calculated sweet spots for different clinical parameters. RESULTS: Improvements in the UPDRS III and Parkinson's Disease Questionnaire (PDQ-39) correlated positively with the extent of the overlap with the sensorimotor STN. The sweet spots for the UPDRS III (x = 11.6, y = -13.1, z = -6.3) and the PDQ-39 differed (x = 14.8, y = -12.4, z = -4.3) ~3.8 mm. CONCLUSIONS: The main influence of DBS on QoL is likely mediated through the sensory-motor basal ganglia loop. The PDQ sweet spot is located in a posteroventral spatial location in the STN territory. For aspects of QoL, however, there was also evidence of improvement through stimulation of the other STN subnuclei. More research is necessary to customize the DBS target to individual symptoms of each patient. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Qualidade de Vida , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento
8.
Eur J Neurol ; 29(2): 441-449, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724287

RESUMO

BACKGROUND AND OBJECTIVE: Cognitive impairment is among the most burdensome non-motor symptoms in Parkinson's disease (PD) and has been associated with hippocampal atrophy. Exercise has been reported to enhance neuroplasticity in the hippocampus in correlation with an improvement of cognitive function. We present data from the Training-PD study, which was designed to evaluate effects of an "" training protocol on neuronal plasticity in PD. METHODS: We initiated a 6-week exergaming training program, combining visually stimulating computer games with physical exercise in 17 PD patients and 18 matched healthy controls. Volumetric segmentation of hippocampal subfields on T1- and T2-weighted magnetic resonance imaging and brain-derived neurotrophic factor (BDNF) serum levels were analyzed before and after the training protocol. RESULTS: The PD group showed a group-dependent significant volume increase of the left hippocampal subfields CA1, CA4/dentate gyrus (DG) and subiculum after the 6-week training protocol. The effect was most pronounced in the left DG of PD patients, who showed a significantly smaller percentage volume compared to healthy controls at baseline, but not at follow-up. Both groups had a significant increase in serum BDNF levels after training. CONCLUSIONS: The results of the present study indicate that exergaming might be a suitable approach to induce hippocampal volume changes in PD patients. Further and larger studies are needed to verify our findings.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Atrofia/patologia , Jogos Eletrônicos de Movimento , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia
9.
Parkinsonism Relat Disord ; 92: 1-6, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649107

RESUMO

BACKGROUND: While the concept of prodromal Parkinson's disease (PD) is well established, reliable markers for the diagnosis of this disease stage are still lacking. We investigated the functional connectivity of the putamina in a resting-state functional MRI analysis in persons with at least two prodromal factors for PD, which is considered a high risk for PD (HRPD) group, in comparison to PD patients and controls. METHODS: We included 16 PD patients, 20 healthy controls and 20 HRPD subjects. Resting state echo planar images and anatomical T1-weighted images were acquired with a Siemens Prisma 3 T scanner. The computation of correlation maps of the left and the right putamen to the rest of the brain was done in a voxel-wise approach using the REST toolbox. Finally, group differences in the correlation maps were compared on voxel-level and summarized in cluster z-statistics. RESULTS: Compared to both PD patients and healthy controls, the HRPD group showed higher functional connectivity of both putamina to brain regions involved in execution of motion and coordination (cerebellum, vermis, pre- and postcentral gyrus, supplementary motor area) as well as the planning of movement (precuneus, cuneus, superior medial frontal lobe). CONCLUSIONS: Higher functional connectivity of the putamina of HRPD subjects to other brain regions involved in motor execution and planning may indicate a compensatory mechanism. Follow-up evaluation and independent longitudinal studies should test whether our results reflect a dynamic process associated with a prodromal PD state.


Assuntos
Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Adaptação Fisiológica/fisiologia , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Movimento , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Sintomas Prodrômicos , Putamen/diagnóstico por imagem , Putamen/fisiopatologia , Fatores de Risco
10.
Clin Neurophysiol ; 132(12): 2937-2947, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715418

RESUMO

OBJECTIVE: Planning of voluntary object-related movements requires the estimation of the most probable object properties. We investigated how 14 writer's cramp (WC) patients compared to 14 controls use probabilistic weight cues in a serial grip-lift task. METHODS: In every grip-lift trial, an object of either light, medium or heavy weight had to be grasped and lifted after a visual cue gave a probabilistic prediction of the object weights (e.g. 32.5% light, 67.5% medium, 0 % heavy). We determined peak (1) grip force GF, (2) load force LF, (3) grip force rate GFR, (4) load force rate LFR, while we registered brain activity with functional magnetic resonance imaging. RESULTS: In both groups, GFR, LFR and GF increased when a higher probability of heavy weights was announced. When a higher probability of light weights was indicated, controls reduced GFR, LFR and GF, while WC patients did not downscale their forces. There were no inter-group differences in blood oxygenation level dependent activation. CONCLUSIONS: WC patients could not utilize the decision range in motor planning and adjust their force in a probabilistic cued fine motor task. SIGNIFICANCE: The results support the pathophysiological model of a hyperfunctional dopamine dependent direct basal ganglia pathway in WC.


Assuntos
Sinais (Psicologia) , Distúrbios Distônicos/fisiopatologia , Força da Mão/fisiologia , Desempenho Psicomotor/fisiologia , Percepção de Peso/fisiologia , Adulto , Idoso , Feminino , Dedos/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
11.
Front Neurol ; 12: 694286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262526

RESUMO

Background: Essential tremor (ET) occurs with steeply increasing prevalence in the elderly, and apart from disease duration, age is independently associated with an increase of tremor amplitude and a decrease of frequency. White matter hyperintensities (WMHs) are a common finding in the elderly, and their role in the pathophysiology of ET is unknown. The aims of this study were to examine whether ET patients differ in their total or region-specific WMH volumes from healthy controls and to determine the impact of WMH on tremor characteristics. Methods: A total of 47 elderly ET patients with a mean age of 72 years and 39 age-matched healthy controls underwent a thorough clinical assessment and 3T MRI. Total WMH volumes were derived from T2-weighted fluid-attenuated inversion recovery (FLAIR) MR images. Additionally, region of interest-based WMH volumes for the Johns Hopkins University (JHU) white matter tracts and labels were calculated, and WMHs were assessed semiquantitatively using the Fazekas scale. Results: Essential tremor patients and healthy controls did not differ in their total or tract-specific WMH volumes or Fazekas scores. However, WMH volume was significantly positively correlated with tremor severity on the TETRAS scale, and there was a significant negative correlation with the mean accelerometric tremor frequency. In a multiple linear regression model including disease duration, age, and age-adjusted total WMH volume, only the WMH volume significantly predicted tremor severity, while age and disease duration were not significant. Conclusion: We found evidence for a direct association between WMH volume and tremor severity. If confirmed by larger studies, our findings could explain the well-known relation between age and tremor severity.

12.
Neuroimage Clin ; 31: 102761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34298476

RESUMO

BACKGROUND: Writer's cramp (WC), a task specific form of dystonia, is considered to be a motor network disorder, but abnormal sensory tactile processing has also been acknowledged. The sensory spatial discrimination threshold (SDT) can be determined with a spatial acuity test (JVP domes). In addition to increased SDT, patients with WC exhibited dysfunctional sensory processing in the sensory cortex, insula, basal ganglia and cerebellum in a functional magnetic resonance imaging (fMRI) study while performing the spatial acuity test. OBJECTIVES: To assess whether effective connectivity (EC) in the sensory network including cortical, basal ganglia, thalamic and cerebellar regions of interest in WC patients is abnormal. METHODS: We used fMRI and applied a block design, while 19 WC patients and 13 age-matched healthy controls performed a spatial discrimination task. Before we assessed EC using dynamic causal modelling, we compared three model structures based on the current literature. We enclosed regions of interest that are established for sensory processing during right hand stimulation: Left thalamus, somatosensory, parietal and insular cortex, posterior putamen, and right cerebellum. RESULTS: The EC analysis revealed task-dependent decreased unidirectional connectivity between the insula and the posterior putamen. The connectivity involving the primary sensory cortex, parietal cortex and cerebellum were not abnormal in WC. The two groups showed no differences in their behavioural data. CONCLUSIONS: Perception and integration of sensory information requires the exchange of information between the insula cortex and the putamen, a sensory process that was disturbed in WC patients.


Assuntos
Distúrbios Distônicos , Gânglios da Base , Distúrbios Distônicos/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal , Córtex Somatossensorial/diagnóstico por imagem
13.
Ultraschall Med ; 42(6): 623-633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32492728

RESUMO

OBJECTIVE: To validate transcranial sonography (TCS) as a novel imaging tool for the assessment of medial temporal lobe (MTL) atrophy (MTA). MATERIALS AND METHODS: Participants with Alzheimer's disease (AD, n = 30) and age-sex-matched controls (n = 30) underwent TCS and MRI. On TCS, MTL structures (choroidal fissure (CF) and temporal horn (TH)) were measured and combined to create an MTA score in sonography (MTA-S). Furthermore, both THs and the third ventricle were combined to form the ventricle enlargement score in sonography (VES-S). On MRI, the MTL was evaluated by linear measurements, MTA scale and hippocampal volumetry. Validation was performed by comparing imaging methods and the patient group. RESULTS: Intraclass correlations for CF and TH showed substantial intra/inter-rater reliability (> 0.80). TCS and MRI showed strong to moderate correlation regarding TH (right = 0.88, left = 0.89) and CF (right = 0.70, left = 0.47). MTA-S correlated significantly with the hippocampal volume (right = -0.51, left = -0.47), predicted group membership in logistic regression (Exp(B) right = 3.0, left = 2.7), and could separate AD patients from controls (AUC = 0.93). An MTA-S of 6 mm and 10 mm discriminated MRI MTA scores 0-1 (from 2-4) and MTA score 4 (from 0-3) with 100 % specificity, respectively. VES-S also showed a moderate correlation with the hippocampal volume (r = -0.66) and could differentiate AD patients from controls (AUC = 0.93). CONCLUSION: Our results suggest that TCS may be an alternative imaging tool for the assessment of MTL atrophy and ventricular enlargement for patients in whom MRI scanning is not possible. Additionally, TCS offers a practical, patient-friendly and inexpensive option for the screening and follow-up of individuals with AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Atrofia/patologia , Biomarcadores , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia
14.
Neurology ; 96(6): e904-e915, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33219138

RESUMO

OBJECTIVE: To examine whether hippocampal volume loss is primarily associated with cognitive status or pathologic ß-amyloid 1-42 (Aß42) levels, this study compared hippocampal subfield volumes between patients with Parkinson disease (PD) with mild cognitive impairment (PD-MCI) and without cognitive impairment (PD-CN) and between patients with low and high Aß42 levels, in addition exploring the relationship among hippocampal subfield volumes, CSF biomarkers (Aß42, phosphorylated and total tau), neuropsychological tests, and activities of daily living. METHODS: Forty-five patients with PD without dementia underwent CSF analyses and MRI as well as comprehensive motor and neuropsychological examinations. Hippocampal segmentation was conducted using FreeSurfer image analysis suite 6.0. Regression models were used to compare hippocampal subfield volumes between groups, and partial correlations defined the association between variables while controlling for intracranial volume (ICV). RESULTS: Linear regressions revealed cognitive group as a statistically significant predictor of both the hippocampal-amygdaloid transition area (HATA; ß = -0.23, 95% CI -0.44 to -0.02) and the cornu ammonis 1 region (CA1; ß = -0.28, 95% confidence interval [CI] -0.56 to -0.02), independent of disease duration and ICV, with patients with PD-MCI showing significantly smaller volumes than PD-CN. In contrast, no subfields were predicted by Aß42 levels. Smaller hippocampal volumes were associated with worse performance on memory, language, spatial working memory, and executive functioning tests. The subiculum was negatively correlated with total tau levels (r = -0.37, 95% CI -0.60 to -0.09). CONCLUSION: Cognitive status, but not CSF Aß42, predicted hippocampal volumes, specifically the CA1 and HATA. Hippocampal subfields were associated with various cognitive domains, as well as with tau pathology.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Disfunção Cognitiva/fisiopatologia , Hipocampo/patologia , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Atividades Cotidianas , Idoso , Biomarcadores/líquido cefalorraquidiano , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Disfunção Cognitiva/etiologia , Feminino , Seguimentos , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/complicações
15.
BMC Geriatr ; 20(1): 45, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32028945

RESUMO

BACKGROUND: Motor and cognitive deficits and consequently mobility problems are common in geriatric patients. The currently available methods for diagnosis and for the evaluation of treatment in this vulnerable cohort are limited. The aims of the ComOn (COgnitive and Motor interactions in the Older populatioN) study are (i) to define quantitative markers with clinical relevance for motor and cognitive deficits, (ii) to investigate the interaction between both motor and cognitive deficits and (iii) to assess health status as well as treatment outcome of 1000 geriatric inpatients in hospitals of Kiel (Germany), Brescia (Italy), Porto (Portugal), Curitiba (Brazil) and Bochum (Germany). METHODS: This is a prospective, explorative observational multi-center study. In addition to the comprehensive geriatric assessment, quantitative measures of reduced mobility and motor and cognitive deficits are performed before and after a two week's inpatient stay. Components of the assessment are mobile technology-based assessments of gait, balance and transfer performance, neuropsychological tests, frailty, sarcopenia, autonomic dysfunction and sensation, and questionnaires to assess behavioral deficits, activities of daily living, quality of life, fear of falling and dysphagia. Structural MRI and an unsupervised 24/7 home assessment of mobility are performed in a subgroup of participants. The study will also investigate the minimal clinically relevant change of the investigated parameters. DISCUSSION: This study will help form a better understanding of symptoms and their complex interactions and treatment effects in a large geriatric cohort.


Assuntos
Acidentes por Quedas , Atividades Cotidianas , Idoso , Brasil , Cognição , Medo , Avaliação Geriátrica , Alemanha , Humanos , Itália , Portugal , Estudos Prospectivos , Qualidade de Vida
16.
Parkinsonism Relat Disord ; 76: 85-90, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033879

RESUMO

INTRODUCTION: A stooped posture is a main clinical feature of Parkinson's disease (PD). The assessment of posture is important to measure treatment effects. The aim of this study was to investigate the reliability of a standardized postural rating tool, to calculate minimal detectable change scores and to assess the role of gender and age. METHODS: Two independent raters assessed total camptocormia (TCC), upper camptocormia (UCC) and Pisa angles of 192 PD patients and 78 healthy controls (HC) with the free NeuroPostureApp©(http://www.neuroimaging.uni-kiel.de/NeuroPostureApp). Reliabilities and linear models were calculated for different effects. Three subgroups were defined based on two thresholds (mean+2SD of HC and PD): A) normal, B) presumed stooped/lateral bended posture and C) postural disorder. RESULTS: Intraclass correlation coefficients ranged between 0.71 and 0.95 for the interrater and test-retest reliability of the three angles. The minimal detectable change values in the PD patients were 3.7°, 6.7° and 2.1° for the TCC, UCC and Pisa angles, respectively. Men had a more stooped posture than women (p < 0.05). Patients with PD had a worse posture than HC (p < 0.001) in all three angles. For the TCC angle, 39.1% of the patients had a normal posture (<17.4°), 47.9% a presumed stooped posture (>17.4°, <30.2°) and 6.3° had camptocormia (>30.2°). CONCLUSIONS: The NeuroPostureApp© is reliable. Our results confirmed gender differences and the progression of postural deviation in PD patients with age and empirically support the ≥30° TCC angle as a defining criterium for camptocormia. Diagnostic criteria for UCC and Pisa syndrome should be further explored in future studies.


Assuntos
Atrofia Muscular Espinal/diagnóstico , Doença de Parkinson/fisiopatologia , Postura/fisiologia , Curvaturas da Coluna Vertebral/diagnóstico , Fatores Etários , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular Espinal/etiologia , Doença de Parkinson/complicações , Fatores Sexuais , Curvaturas da Coluna Vertebral/etiologia
17.
J Pain Res ; 12: 3055-3066, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807061

RESUMO

PURPOSE: Allodynia refers to pain evoked by physiologically innocuous stimuli. It is a disabling symptom of neuropathic pain following a lesion within the peripheral or central nervous system. In fact, two different pathophysiological mechanisms of cold allodynia (ie, hypersensitivity to innocuous cold) have been proposed. The peripheral sensitization of nociceptive neurons can produce cold allodynia, which can be induced experimentally by a topical application of menthol. An alternative mechanism involves reduced inhibition of central pain processing by innocuous cold stimuli. A model to induce the latter type of allodynia is the conduction block of peripheral A-fiber input. PATIENTS AND METHODS: In the presented study, functional MRI was used to analyze these two different experimental models of cold allodynia. In order to identify the underlying cerebral activation patterns of both mechanisms, the application of menthol and the induction of a mechanical A-fiber blockade were studied in healthy volunteers. RESULTS: The block-induced cold allodynia caused significantly stronger activation of the medial polymodal pain processing pathway, including left medial thalamus, anterior cingulate cortex, and medial prefrontal cortex. In contrast, menthol-induced cold allodynia caused significantly stronger activity of the left lateral thalamus as well as the primary and secondary somatosensory cortices, key structures of the lateral discriminative pathway of pain processing. Mean pain intensity did not differ between both forms of cold allodynia. CONCLUSION: Experimental cold allodynia is mediated in different cerebral areas depending on the underlying pathophysiology. The activity pattern associated with block-induced allodynia confirms a fundamental integration between painful and non-painful temperature sensation, ie, the cold-induced inhibition of cold pain.

18.
Front Neurol ; 10: 1254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849818

RESUMO

Introduction: Postural abnormalities are common in Parkinson's disease (PD) and increasing with disease progression. While many studies focus on balance and gait, postural alignment is only infrequently studied. Purpose: The aim of the present study was to examine the immediate and long-term effects of medication and deep brain stimulation (DBS) in the subthalamic nucleus on postural alignment in PD. Materials and Methods: PD patients (n = 192) in an advanced stage of disease were videotaped during a standardized l-dopa trial before and after DBS. The patients were tested with and without medication pre-surgical and retested post-surgical (6-24 months) in all treatment combinations of medication and DBS regarding the on and off conditions. The forward bending as total camptocormia (TCC) and upper camptocormia (UCC) angles and lateral bending as Pisa angle were assessed with the free downloadable NeuroPostureApp (http://www.neuroimaging.uni-kiel.de/NeuroPostureApp/). Three subgroups were defined according to normative values of healthy controls and according to clinical criteria: patients with normal posture, with stooped posture, and with postural disorders. Results: A stooped posture was found in 82% of the patients with regard to the TCC angle and in 54% for the UCC angle. Sixty-two percent had an abnormal Pisa angle. Camptocormia was diagnosed in ~7% and a Pisa syndrome in 1% of the patients. Medication and DBS both significantly improved postural alignment in the entire cohort. Female and male patients benefit similarly by medication and stimulation. Subgroup analyses revealed that the effects were also significant for patients with stooped posture, and the effects were strongest for patients with camptocormia: they led to angles below the diagnostical criterion for camptocormia for 13 of 14 patients with TCC and 11 of 26 patients with UCC. DBS had an additional effect to medication over time for the Pisa angle. Conclusion: Medication and DBS both improved postural alignment in PD patients, but effects were small for the entire cohort. Patients with camptocormia according to the TCC angle benefit strongest. The large differences of the treatment effects may indicate distinct pathological mechanisms for stooped posture and postural disorders. The TCC angle was shown to be sensitive to change. The UCC angle was less sensitive but may be a useful assessment tool for a subgroup.

19.
Neuroscience ; 400: 120-131, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30625332

RESUMO

Day-to-day life involves the perception of events that resemble one another. For the sufficient encoding and correct retrieval of similar information, the hippocampus provides two essential cognitive processes. Pattern separation refers to the differentiation of similar input information, whereas pattern completion reactivates memory representations based on noisy or degraded stimuli. It has been shown that pattern separation specifically relies on the hippocampal dentate gyrus (DG), whereas pattern completion is performed within CA3 networks. Lesions to these hippocampal networks emerging in the course of neurological disorders may thus affect both processes. In anti-leucine-rich, glioma-inactivated 1 (LGI1) encephalitis it has been shown in animal models and human imaging studies that hippocampal DG and CA3 are preferentially involved in the pathophysiology process. Thus, in order to elucidate the structure-function relationship and contribution of hippocampal subfields to pattern separation, we examined patients (n = 15, age range: 36-77 years) with the rare LGI1 encephalitis showing lesions to hippocampal subfields. Patients were tested 3.53 ±â€¯0.65 years after the acute phase of the disease. Structural sequelae were determined by hippocampal subfield volumetry for the DG, CA1, and CA2/3. Patients showed an overall memory deficit including a significant reduction in pattern separation performance (p = 0.016). In volumetry, we found a global hippocampal volume reduction. The deficits in pattern separation performance were best predicted by the DG (p = 0.029), whereas CA1 was highly predictive of recognition memory deficits (p < 0.001). These results corroborate the framework of a regional specialization of hippocampal functions involved in cognitive processing.


Assuntos
Giro Denteado/patologia , Encefalite/patologia , Encefalite/psicologia , Memória/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Proteínas/genética , Adulto , Idoso , Atrofia/complicações , Encefalite/complicações , Encefalite/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Reconhecimento Psicológico/fisiologia
20.
Front Neurol ; 9: 983, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519212

RESUMO

Introduction: Deep brain stimulation (DBS) is an established treatment for various movement disorders. There is little data available about the potential damage to brain parenchyma through DBS treatment. The objective of this study was to investigate the occurrence of signal changes on magnetic resonance imaging (MRI) in patients treated with DBS. Methods: We retrospectively analyzed MRI scans of 30 DBS patients (21 patients with Parkinson's disease, 3 patients with dystonia and 6 patients with tremor) that had undergone additional MRI scans after DBS surgery (ranging from 2 months to 8 years). Axial T2 sequences were analyzed by two raters using a standardized lesion mapping procedure. Results: 26 out of 30 analyzed patients showed hyperintense white matter changes surrounding the DBS lead (mean volume = 2.43 ml). Lesions were prominent along the upper half of the electrode lead within the subcortical white matter, with no abnormalities along the lower lead. Their volume was significantly correlated to the time from surgery to MRI and to the number of microelectrodes used in surgery, but was independent from underlying disease (Parkinson's disease, dystonia, tremor), target structure (STN, GPi, VIM), demographical data, or cardiovascular risk factors. Discussion: White matter changes along the electrode leads in DBS patients are a frequent finding. These changes seem to evolve with certain latency after surgery and might be radiologically classified as a gliosis. Our findings identify the number of intraoperatively used microelectrodes as a risk factor in the formation of gliosis. Therefore, mechanical damage at the time of surgery and an individual tissue response might contribute to their evolution. Further studies are needed to define the exact mechanisms and their clinical impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...