Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 49(5): 397-406, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771359

RESUMO

Soil-transmitted nematodes infect over a billion people and place several billion more at risk of infection. Hookworm disease is the most significant of these soil-transmitted nematodes, with over 500 million people infected. Hookworm infection can result in debilitating and sometimes fatal iron-deficiency anemia, which is particularly devastating in children and pregnant women. Currently, hookworms and other soil-transmitted nematodes are controlled by administration of a single dose of a benzimidazole to targeted populations in endemic areas. While effective, people are quickly re-infected, necessitating frequent treatment. Widespread exposure to anthelmintic drugs can place significant selective pressure on parasitic nematodes to generate resistance, which has severely compromised benzimidazole anthelmintics for control of livestock nematodes in many areas of the world. Here we report, to our knowledge, the first naturally occurring multidrug-resistant strain of the canine hookworm Ancylostoma caninum. We reveal that this isolate is resistant to fenbendazole at the clinical dosage of 50 mg/kg for 3 days. Our data shows that this strain harbors a fixed, single base pair mutation at amino acid 167 of the ß-tubulin isotype 1 gene, and by using CRISPR/Cas9 we demonstrate that introduction of this mutation into the corresponding amino acid in the orthologous ß-tubulin gene of Caenorhabditis elegans confers a similar level of resistance to thiabendazole. We also show that the isolate is resistant to the macrocyclic lactone anthelmintic ivermectin. Understanding the mechanism of anthelmintic resistance is important for rational design of control strategies to maintain the usefulness of current drugs, and to monitor the emergence of resistance. The isolate we describe represents the first multidrug-resistant strain of A. caninum reported, and our data reveal a resistance marker that can emerge naturally in response to heavy anthelminthic treatment.


Assuntos
Ancylostoma/efeitos dos fármacos , Ancylostoma/isolamento & purificação , Doenças do Cão/parasitologia , Resistência a Medicamentos , Infecções por Uncinaria/veterinária , Ancylostoma/genética , Ancylostoma/crescimento & desenvolvimento , Animais , Anti-Helmínticos/farmacologia , Sequência de Bases , Cães , Feminino , Proteínas de Helminto/genética , Infecções por Uncinaria/parasitologia , Ivermectina/farmacologia , Masculino , Filogenia , Tiabendazol/farmacologia , Tubulina (Proteína)/genética
2.
Int J Parasitol ; 48(8): 585-590, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29530648

RESUMO

Interest has recently grown in developing the entomopathogenic nematode Heterorhabditis bacteriophora as a model to genetically dissect the process of parasitic infection. Despite the availability of a full genome assembly, there is substantial variation in gene model accuracy. Here, a methodology is presented for leveraging RNA-seq evidence to generate improved annotations using ab initio gene prediction software. After alignment of reads and subsequent generation of a RNA-seq supported annotation, the new gene prediction models were verified on a selection of genes by comparison with sequenced 5' and 3' rapid amplification of cDNA ends products. By utilising a whole transcriptome for genome annotation, the current reference annotation was enriched, demonstrating the importance of coupling transcriptional data with genome assemblies.


Assuntos
RNA/genética , Rhabditoidea/genética , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Anotação de Sequência Molecular , Rhabditoidea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...