Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 13(1): 2362454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846084

RESUMO

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.


Assuntos
Antígenos CD20 , Imunoterapia , Linfoma de Células B , Rituximab , Tetraspaninas , Humanos , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Antígenos CD20/genética , Rituximab/farmacologia , Rituximab/uso terapêutico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Linhagem Celular Tumoral , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/genética , Linfoma de Células B/tratamento farmacológico , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Vincristina/farmacologia , Vincristina/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Cells ; 10(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34571854

RESUMO

PAX7 transcription factor plays a crucial role in embryonic myogenesis and in adult muscles in which it secures proper function of satellite cells, including regulation of their self renewal. PAX7 downregulation is necessary for the myogenic differentiation of satellite cells induced after muscle damage, what is prerequisite step for regeneration. Using differentiating pluripotent stem cells we documented that the absence of functional PAX7 facilitates proliferation. Such action is executed by the modulation of the expression of two proteins involved in the DNA methylation, i.e., Dnmt3b and Apobec2. Increase in Dnmt3b expression led to the downregulation of the CDK inhibitors and facilitated cell cycle progression. Changes in Apobec2 expression, on the other hand, differently impacted proliferation/differentiation balance, depending on the experimental model used.


Assuntos
Desaminases APOBEC/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Fator de Transcrição PAX7/metabolismo , Desaminases APOBEC/genética , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/fisiologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , DNA Metiltransferase 3B
3.
Front Immunol ; 12: 604066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679741

RESUMO

Expansion protocols for human T lymphocytes using magnetic beads, which serve as artificial antigen presenting cells (aAPCs), is well-studied. Yet, the efficacy of magnetic beads for propagation and functionality of peripheral blood lymphocytes (PBLs) isolated from companion dogs still remains limited. Domestic dog models are important in immuno-oncology field. Thus, we built the platform for induction of canine PBLs function, proliferation and biological activity using nano-sized magnetic beads (termed as MicroBeads) coated with anti-canine CD3 and CD28 antibodies. Herein we reveal that activation of canine PBLs via MicroBeads induces a range of genes involved in immediate-early response to T cell activation in dogs. Furthermore, canine T lymphocytes are effectively activated by MicroBeads, as measured by cluster formation and induction of activation marker CD25 on canine T cells as quickly as 24 h post stimulation. Similar to human T cells, canine PBLs require lower activation signal strength for efficient proliferation and expansion, as revealed by titration studies using a range of MicroBeads in the culture. Additionally, the impact of temperature was assessed in multiple stimulation settings, showing that both 37°C and 38.5°C are optimal for the expansion of canine T cells. In contrast to stimulation using plant mitogen Concanavalin A (ConA), MicroBead-based activation did not increase activation-induced cell death. In turn, MicroBeads supported the propagation of T cells with an effector memory phenotype that secreted substantial IL-2 and IFN-γ. Thus, MicroBeads represent an accessible and affordable tool for conducting immunological studies on domestic dog models. Similarities in inducing intracellular signaling pathways further underscore the importance of this model in comparative medicine. Presented herein MicroBead-based expansion platforms for canine PBLs may benefit adoptive immunotherapy in dogs and facilitate the design of next-generation clinical trials in humans.


Assuntos
Proliferação de Células , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Cães , Linfócitos T/citologia
4.
Front Oncol ; 11: 738385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127467

RESUMO

Chemotherapy is the commonly used treatment for advanced lung cancer. However, it produces side effects such as the development of chemoresistance. A possible responsible mechanism may be therapy-induced senescence (TIS). TIS cells display increased senescence-associated ß-galactosidase (SA-ß-gal) activity and irreversible growth arrest. However, recent data suggest that TIS cells can reactivate their proliferative potential and lead to cancer recurrence. Our previous study indicated that reactivation of proliferation by TIS cells might be related with autophagy modulation. However, exact relationship between both processes required further studies. Therefore, the aim of our study was to investigate the role of autophagy in the senescence-related chemoresistance of lung cancer cells. For this purpose, human and murine lung cancer cells were treated with two commonly used chemotherapeutics: cisplatin (CIS), which forms DNA adducts or docetaxel (DOC), a microtubule poison. Hypoxia, often overlooked in experimental settings, has been implicated as a mechanism responsible for a significant change in the response to treatment. Thus, cells were cultured under normoxic (~19% O2) or hypoxic (1% O2) conditions. Herein, we show that hypoxia increases resistance to CIS. Lung cancer cells cultured under hypoxic conditions escaped from CIS-induced senescence, displayed reduced SA-ß-gal activity and a decreased percentage of cells in the G2/M phase of the cell cycle. In turn, hypoxia increased the proliferation of lung cancer cells and the proportion of cells proceeding to the G0/G1 phase. Further molecular analyses demonstrated that hypoxia inhibited the prosenescent p53/p21 signaling pathway and induced epithelial to mesenchymal transition in CIS-treated cancer cells. In cells treated with DOC, such effects were not observed. Of importance, pharmacological autophagy inhibitor, hydroxychloroquine (HCQ) was capable of overcoming short-term CIS-induced resistance of lung cancer cells in hypoxic conditions. Altogether, our data demonstrated that hypoxia favors cancer cell escape from CIS-induced senescence, what could be overcome by inhibition of autophagy with HCQ. Therefore, we propose that HCQ might be used to interfere with the ability of senescent cancer cells to repopulate following exposure to DNA-damaging agents. This effect, however, needs to be tested in a long-term perspective for preclinical and clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...