Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 82(14): 6315-7, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20583767

RESUMO

There exists an increasing need to develop a reliable method to detect trace contaminants in fuel gas derived from coal gasification. While Hg is subject to current and future regulations, As, Se, and P emissions may eventually be regulated. Sorbents are the most promising technology for the removal of contaminants from coal-derived fuel gas, and it will be important to develop a rapid analytical detection method to ensure complete removal and determine the ideal time for sorbent replacement/regeneration in order to reduce costs. This technical note explores the use of a commercial gas chromatography/ion trap mass spectrometry system for the detection of four gaseous trace contaminants in a simulated fuel gas. Quantitative, repeatable detection with limits at ppbv to ppmv levels were obtained for arsine (AsH(3)), phosphine (PH(3)), and hydrogen selenide (H(2)Se), while qualitative detection was observed for mercury. Decreased accuracy and response caused by the primary components of fuel gas were observed.

2.
Environ Sci Technol ; 41(18): 6579-84, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17948811

RESUMO

Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.


Assuntos
Carvão Vegetal/química , Mercúrio/química , Óxidos de Enxofre/química , Dióxido de Enxofre/química
3.
J Environ Manage ; 84(4): 628-34, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16959396

RESUMO

The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/h pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. A patent for the process was issued in February 2003. The Thief sorbents are cheaper than commercially-available activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal from flue gas. The Thief Process was licensed to Mobotec USA, Inc. in May of 2005.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Carvão Mineral , Mercúrio/química , Adsorção , Poluentes Atmosféricos/análise , Gases , Mercúrio/análise , Projetos Piloto , Centrais Elétricas , Gerenciamento de Resíduos/métodos
4.
Environ Sci Technol ; 40(18): 5601-9, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17007115

RESUMO

Methods for removing mercury from flue gas have received increased attention because of recent limitations placed on mercury emissions from coal-fired utility boilers by the U. S. Environmental Protection Agency and various states. A promising method for mercury removal is catalytic oxidation of elemental mercury (Hg0) to oxidized mercury (Hg2+), followed by wet flue gas desulfurization (FGD). FGD cannot remove Hg0, but easily removes Hg2+ because of its solubility in water. To date, research has focused on three broad catalyst areas: selective catalytic reduction catalysts, carbon-based materials, and metals and metal oxides. We review published results for each type of catalyst and also present a discussion on the possible reaction mechanisms in each case. One of the major sources of uncertainty in understanding catalytic mercury oxidation is a lack of knowledge of the reaction mechanisms and kinetics. Thus, we propose that future research in this area should focus on two major aspects: determining the reaction mechanism and kinetics and searching for more cost-effective catalyst and support materials.


Assuntos
Poluentes Atmosféricos/química , Carvão Mineral , Mercúrio/química , Poluentes Atmosféricos/isolamento & purificação , Poluição do Ar/prevenção & controle , Catálise , Gases/química , Mercúrio/isolamento & purificação , Metais/química , Oxirredução , Óxidos/química
5.
J Air Waste Manag Assoc ; 53(6): 645-715, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12828330

RESUMO

The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier. Two technologies for storage of the captured CO2 are reviewed--sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies. This review also includes discussion of possible problems related to deep injection of CO2. There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring. Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal seam. These hypotheses provide significant insight into the fundamental chemical, physical, and thermodynamic phenomena that occur during coal seam sequestration of CO2.


Assuntos
Dióxido de Carbono/análise , Carvão Mineral/análise , Geologia , Clima , Monitoramento Ambiental , Fenômenos Geológicos , Efeito Estufa , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...