Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 16472, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712673

RESUMO

We demonstrate a logic gate based on interference of forward volume spin waves (FVSWs) propagating in a 54 nm thick, 100 µm wide yttrium iron garnet waveguide grown epitaxially on a garnet substrate. Two FVSWs injected by coplanar waveguides were made to interfere constructively and destructively by varying their phase difference, showing an XNOR logic function. The reflected and resonant waves generated at the edges of the waveguide were suppressed using spin wave absorbers. The observed isolation ratio was 19 dB for a magnetic field of ~2.80 kOe ( = 223 kA m-1) applied perpendicular to the film. The wavelength and device length were ~8.9 µm and ~53 µm, respectively. Further, the interference state of the SWs was analyzed using three-dimensional radio frequency simulations.

2.
Sci Rep ; 7(1): 7898, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801630

RESUMO

In the fifty years since the postulation of Moore's Law, the increasing energy consumption in silicon electronics has motivated research into emerging devices. An attractive research direction is processing information via the phase of spin waves within magnonic-logic circuits, which function without charge transport and the accompanying heat generation. The functional completeness of magnonic logic circuits based on the majority function was recently proved. However, the performance of such logic circuits was rather poor due to the difficulty of controlling spin waves in the input junction of the waveguides. Here, we show how Snell's law describes the propagation of spin waves in the junction of a Ψ-shaped magnonic majority gate composed of yttrium iron garnet with a partially metallized surface. Based on the analysis, we propose a magnonic counterpart of a core-cladding waveguide to control the wave propagation in the junction. This study has therefore experimentally demonstrated a fundamental building block of a magnonic logic circuit.

3.
Sci Rep ; 6: 30268, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27443989

RESUMO

Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

4.
Opt Express ; 15(11): 6612-22, 2007 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19546970

RESUMO

It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...