Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36984979

RESUMO

In this study, two different sample preparation methods to synthesize activated carbon from pine wood were compared. The pine wood activated carbon was prepared by mixing ZnCl2 by physical mixing, i.e., "dry mixing" and impregnation, i.e., "wet mixing" before high temperature carbonization. The influence of these methods on the physicochemical properties of activated carbons was examined. The activated carbon was analyzed using nitrogen sorption (surface area, pore volume and pore size distribution), XPS, density, Raman spectroscopy, and electrochemistry. Physical mixing led to a slightly higher density carbon (1.83 g/cm3) than wet impregnation (1.78 g/cm3). Raman spectroscopy analysis also showed that impregnation led to activated carbon with a much higher degree of defects than physical mixing, i.e., ID/IG = 0.86 and 0.89, respectively. The wet impregnated samples also had better overall textural properties. For example, for samples activated with 1:1 ratio, the total pore volume was 0.664 vs. 0.637 cm3/g and the surface area was 1191 vs. 1263 m2/g for dry and wet mixed samples, respectively. In the electrochemical application, specifically in supercapacitors, impregnated samples showed a much better capacitance at low current densities, i.e., 247 vs. 146 F/g at the current density of 0.1 A/g. However, the physically mixed samples were more stable after 5000 cycles: 97.8% versus 94.4% capacitance retention for the wet impregnated samples.

2.
Environ Technol ; 37(16): 2113-23, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26776302

RESUMO

There is an increasing worldwide demand for biogas. Anaerobic co-digestion involves the treatment of different substrates with the aim of improving the production of biogas and the stability of the process. This study evaluates how methane production is affected by the co-digestion of pig and dairy manure with grass silage and pulp and paper mill sludge and assesses whether methane production is affected by factors other than nutrient deficiency, low buffering capacity, inadequate dilution, and an insufficient activity and amount of microorganism culture. Anaerobic digestion was performed in batch reactors under mesophilic conditions for 20 days. The season of grass silage and manure collection proved to be an important factor affecting methane production. Spring grass silage produced a maximum of 250 mL/VSadded and spring manure 150 mL/VSadded, whereas autumn grass silage produced at most 140 ml/VSadded and autumn manure 45 mL/VSadded. The pulp mill sludge used is comprised of both primary and secondary sludge and produced at most 50 mL/VSadded regardless of season; this substrate benefitted most from co-digestion.


Assuntos
Biocombustíveis , Resíduos Industriais , Esterco , Eliminação de Resíduos/métodos , Silagem , Agricultura , Animais , Bovinos , Metano/análise , Metano/metabolismo , Papel , Poaceae , Suínos
3.
J Occup Environ Hyg ; 7(3): 144-51, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20029714

RESUMO

This study determined that emission of sesquiterpenes from processed wood warrants attention in the work environment. Currently, only the monoterpenes in the terpene group are monitored in occupational hygiene studies. Terpene emissions are a work environment issue for industries that process wood, as they are known to cause respiratory difficulties and mucous membrane irritation. Fresh sawdust of the most common boreal conifers, Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), was subjected to processing (drying), and the emissions were analyzed with a gas chromatograph-mass spectrometer. The data indicate that workers are exposed to significant amounts of sesquiterpenes, an observation that has not been recorded previously at wood processing plants. On average, the proportion of sesquiterpenes to monoterpenes was 21 +/- 5% (STD, n = 11) for spruce and 15 +/- 5% (STD, n = 13) for pine. The composition of terpenes emitted in air from spruce wood differs from the composition in resin. The sum of monoterpenes and sesquiterpenes can exceed the occupational exposure limit for turpentine for processes where monoterpene concentrations are already close to the occupational exposure limit, and for processes involving the processing of bark. Findings suggest that future studies of health effects from terpenes in air should measure monoterpenes and sesquiterpenes to assess whether the current OELs are appropriate.


Assuntos
Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Sesquiterpenos/análise , Madeira/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Monoterpenos/análise , Noruega , Saúde Ocupacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...