Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Neurophysiol Pract ; 4: 69-75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30976727

RESUMO

OBJECTIVES: To compare the quality of electroencephalography (EEG) signals recorded with a rapid response EEG system and the signals recorded with conventional clinical EEG recordings. METHODS: We studied the differences between EEG recordings taken with a rapid response EEG system (Ceribell) compared to conventional EEG through two separate set of studies. First, we conducted simultaneous recording on a healthy subject in an experimental laboratory setting where the rapid response EEG and two conventional EEG recording systems (Nihon Kohden and Natus) were used at the same time on the same subject using separate but adjacently placed electrodes. The rapid response EEG was applied by a user without prior training in EEG set up while two separate sets of conventional EEG electrodes were placed by a trained EEG technologist. The correlation between each of the recordings was calculated and quantitatively compared. In the second study, we performed a set of consecutive recordings on 22 patients in an ICU environment. The rapid response EEG system was applied by clinical ICU fellows without prior training in EEG set up while waiting for the conventional EEG system to arrive, after which the rapid response EEG was stopped and the conventional EEG was applied by a trained EEG technologist. We measured and compared several metrics of EEG quality using comparative metrics. RESULTS: For the simultaneous recording performed in a laboratory environment, the tested rapid response EEG and conventional EEG recordings showed agreement when aligned and visually compared in the time domain, all EEG waveform features were distinguishable in both recordings. The correlation between each pair of recordings also showed that the correlation between the rapid response EEG recording and each of the two conventional recordings was statistically the same as the correlation between the two conventional recordings. For the consecutive recordings performed in real life clinical ICU environment, Hjorth parameters, spike count, baseline wander, and kurtosis measures were statistically similar (p > 0.05, Wilcoxon signed rank test) for the rapid response EEG and conventional clinical EEG recordings. The rapid response EEG data had significantly lower 60 Hz noise compared to recordings made with the conventional systems both in laboratory and ICU settings. Lastly, the clinical information obtained with the rapid response EEG system was concordant with the diagnostic information obtained with the conventional EEG recordings in the ICU setting. CONCLUSIONS: Our findings show that the tested rapid response EEG system provides EEG recording quality that is equivalent to conventional EEG systems and even better when it comes to 60 Hz noise level. The concordance between the rapid response EEG and conventional EEG systems was demonstrated both in a controlled laboratory environment as well as in the noisy environment of a hospital ICU on patients with altered mental status. SIGNIFICANCE: Our findings clearly confirm that the tested rapid response EEG system provides EEG data that is equivalent in quality to the recordings made using conventional EEG systems despite the fact that the rapid response system can be applied within few minutes and with no reliance on specialized technologists. This can be important for urgent situations where the use of conventional EEG systems is hindered by the lengthy setup time and limited availability of EEG technologists.

2.
IEEE Trans Med Imaging ; 37(9): 2060-2069, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29993864

RESUMO

Despite the great promise of integrated positron emission tomography (PET)/magnetic resonance (MR) imaging to add molecular information to anatomical and functional MR, its potential impact in medicine is diminished by a very high cost, limiting its dissemination. An RF-penetrable PET ring that can be inserted into any existing MR system has been developed to address this issue. Employing optical signal transmission along with battery power enables the PET ring insert to electrically float with respect to the MR system. Then, inter-modular gaps of the PET ring allow the RF transmit field from the standard built-in body coil to penetrate into the PET fields-of-view (FOV) with some attenuation that can be compensated for. MR performance, including RF noise, magnetic susceptibility, RF penetrability through and $B_{1}$ uniformity within the PET insert, and MR image quality, were analyzed with and without the PET ring present. The simulated and experimentally measured RF field attenuation factors with the PET ring present were -2.7 and -3.2 dB, respectively. The magnetic susceptibility effect (0.063 ppm) and noise emitted from the PET ring in the MR receive channel were insignificant. $B_{1}$ homogeneity of a spherical agar phantom within the PET ring FOV dropped by 8.4% and MR image SNR was reduced by 3.5 and 4.3 dB with the PET present for gradient-recalled echo and fast-spin echo, respectively. This paper demonstrates, for the first time, an RF-penetrable PET insert comprising a full ring of operating detectors that achieves simultaneous PET/MR using the standard built-in body coil as the RF transmitter.


Assuntos
Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos
3.
IEEE Trans Radiat Plasma Med Sci ; 2(5): 422-431, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30911706

RESUMO

Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) has risen to the cutting edge of medical imaging technology as it allows simultaneous acquisition of structural, functional and molecular information of the patient. A PET insert that can be installed into existing MR systems can in principle reduce the cost barriers for an existing MR site to achieve simultaneous PET/MRI compared to procuring an integrated PET+MRI system. The PET insert systems developed so far for PET/MRI require the RF transmitter coil to reside inside the PET ring as those PET inserts block the RF fields from the MRI system. Here we report for the first time on the performance of a full-ring brain-sized "RF-penetrable" PET insert we have recently completed. This insert allows the RF fields generated by the built-in body coil to penetrate the PET ring. The PET insert comprises a ring of 16 detector modules employing electro-optical coupled signal transmission and a multiplexing framework based on compressed sensing. Energy resolution, coincidence timing resolution (CTR), photopeak position, and coincidence count rate were acquired outside and inside a 3-Tesla MRI system under simultaneous acquisition to evaluate the impact of MRI on the PET performance. Coincidence count rate performance was evaluated by acquiring a cylinder source with high initial activity decaying over time. Tomographic imaging of two phantoms, a custom 6.5-cm diameter resolution phantom with hot rods of four different sizes (2.8 mm, 3.2 mm, 4.2 mm, and 5.2 mm diameter) and a 3D Hoffman brain phantom, were performed to evaluate the imaging capability of the PET insert. The energy resolution at 511 keV and CTR acquired by the PET insert were 16.2±0.1% and 5.3±0.1 ns FWHM, respectively, and remained stable during MRI operation except when the EPI sequence was applied. The PET system starts to show saturation in coincidence count rate at 2.76 million photon counts per second. Most of the 2.8-mm diameter hot rods and main features of the 3D Hoffman brain phantom were resolved by the PET insert, demonstrating its high spatial resolution and capability to image a complex tracer distribution mimicking that seen in the human brain.

4.
Med Phys ; 44(1): 112-120, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28102949

RESUMO

PURPOSE: A brain sized radio frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ nonmagnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. METHODS: The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. RESULTS: The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: The maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0 ± 7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. CONCLUSIONS: These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Ondas de Rádio , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Fatores de Tempo
5.
Med Phys ; 43(5): 2334, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147345

RESUMO

PURPOSE: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. METHODS: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. RESULTS: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. CONCLUSIONS: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imagem Multimodal/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação , Desenho de Equipamento , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Espalhamento de Radiação , Temperatura , Fatores de Tempo , Imagem Corporal Total/métodos
6.
Phys Med Biol ; 60(16): 6407-21, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26237671

RESUMO

In the field of information theory, compressed sensing (CS) had been developed to recover signals at a lower sampling rate than suggested by the Nyquist-Shannon theorem, provided the signals have a sparse representation with respect to some base. CS has recently emerged as a method to multiplex PET detector readouts thanks to the sparse nature of 511 keV photon interactions in a typical PET study. We have shown in our previous numerical studies that, at the same multiplexing ratio, CS achieves higher signal-to-noise ratio (SNR) compared to Anger and cross-strip multiplexing. In addition, unlike Anger logic, multiplexing by CS preserves the capability to resolve multi-hit events, in which multiple pixels are triggered within the resolving time of the detector. In this work, we characterized the time, energy and intrinsic spatial resolution of two CS detectors and a data acquisition system we have developed for a PET insert system for simultaneous PET/MRI. The CS detector comprises a 2 x 4 mosaic of 4 x 4 arrays of 3.2 x 3.2 x 20 mm(3) lutetium-yttrium orthosilicate crystals coupled one-to-one to eight 4 x 4 silicon photomultiplier arrays. The total number of 128 pixels is multiplexed down to 16 readout channels by CS. The energy, coincidence time and intrinsic spatial resolution achieved by two CS detectors were 15.4±0.1% FWHM at 511 keV, 4.5 ns FWHM and 2.3 mm FWHM, respectively. A series of experiments were conducted to measure the sources of time jitter that limit the time resolution of the current system, which provides guidance for potential system design improvements. These findings demonstrate the feasibility of compressed sensing as a promising multiplexing method for PET detectors.


Assuntos
Tomografia por Emissão de Pósitrons/instrumentação , Lutécio/química , Tomografia por Emissão de Pósitrons/métodos , Razão Sinal-Ruído , Silicatos/química
7.
Med Phys ; 42(8): 4526-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26233181

RESUMO

PURPOSE: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. METHODS: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in this way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. RESULTS: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm(3) LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. CONCLUSIONS: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.


Assuntos
Imagem Óptica/instrumentação , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Estudos de Viabilidade
8.
Phys Med Biol ; 60(9): 3459-78, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25856511

RESUMO

The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imagem Multimodal/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos
9.
Phys Med Biol ; 59(13): 3421-30, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24889105

RESUMO

Time-over-threshold (ToT) is attractive as a method of combined timing and energy encoding in positron emission tomography (PET) due to its simplicity in implementation and readout. However, conventional single threshold ToT has a nonlinear response and generally suffers from a tradeoff between timing and energy resolution. The resulting poor performance is not fit for applications requiring fast timing, such as time-of-flight (ToF) PET. In this work it is shown experimentally that by replacing single threshold ToT with a dual threshold method in a new compact circuit, excellent time resolution can be achieved (154 ps FWHM for 3 × 3 × 5 mm(3) LYSO crystals), suitable for ToF. Dual threshold ToT timing results have been compared to a similar single threshold design, demonstrating that dual threshold ToT performance is far superior to that of single threshold ToT (154 ps versus 418 ps coincidence time resolution for the dual and single threshold cases, respectively). A method of correcting for nonlinearity in dual threshold ToT energy spectra is also demonstrated.


Assuntos
Equipamentos e Provisões Elétricas , Tomografia por Emissão de Pósitrons/instrumentação , Desenho de Equipamento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...