Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 7(4): 1278-1301, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729744

RESUMO

Graphene oxide (GO) has broad potential in the biomedical sector. The oxygen-abundant nature of GO means the material is hydrophilic and readily dispersible in water. GO has also been known to improve cell proliferation, drug loading, and antimicrobial properties of composites. Electrospun composites likewise have great potential for biomedical applications because they are generally biocompatible and bioresorbable, possess low immune rejection risk, and can mimic the structure of the extracellular matrix. In the current review, GO-containing electrospun composites for tissue engineering applications are described in detail. In addition, electrospun GO-containing materials for their use in drug and gene delivery, wound healing, and biomaterials/medical devices have been examined. Good biocompatibility and anionic-exchange properties of GO make it an ideal candidate for drug and gene delivery systems. Drug/gene delivery applications for electrospun GO composites are described with a number of examples. Various systems using electrospun GO-containing therapeutics have been compared for their potential uses in cancer therapy. Micro- to nanosized electrospun fibers for wound healing applications and antimicrobial applications are explained in detail. Applications of various GO-containing electrospun composite materials for medical device applications are listed. It is concluded that the electrospun GO materials will find a broad range of biomedical applications such as cardiac patches, medical device coatings, sensors, and triboelectric nanogenerators for motion sensing and biosensing.


Assuntos
Grafite , Materiais Biocompatíveis , Engenharia Tecidual , Cicatrização
2.
Materials (Basel) ; 13(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751260

RESUMO

The outbreak of COVID-19 has spread rapidly across the globe, greatly affecting how humans as a whole interact, work and go about their daily life. One of the key pieces of personal protective equipment (PPE) that is being utilised to return to the norm is the face mask or respirator. In this review we aim to examine face masks and respirators, looking at the current materials in use and possible future innovations that will enhance their protection against SARS-CoV-2. Previous studies concluded that cotton, natural silk and chiffon could provide above 50% efficiency. In addition, it was found that cotton quilt with a highly tangled fibrous nature provides efficient filtration in the small particle size range. Novel designs by employing various filter materials such as nanofibres, silver nanoparticles, and nano-webs on the filter surfaces to induce antimicrobial properties are also discussed in detail. Modification of N95/N99 masks to provide additional filtration of air and to deactivate the pathogens using various technologies such as low- temperature plasma is reviewed. Legislative guidelines for selecting and wearing facial protection are also discussed. The feasibility of reusing these masks will be examined as well as a discussion on the modelling of mask use and the impact wearing them can have. The use of Artificial Intelligence (AI) models and its applications to minimise or prevent the spread of the virus using face masks and respirators is also addressed. It is concluded that a significant amount of research is required for the development of highly efficient, reusable, anti-viral and thermally regulated face masks and respirators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...