Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 5(5): e1000457, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19478869

RESUMO

Virus-specific CD8(+) T cells (T(CD8+)) are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+). Direct presentation of vaccinia virus (VACV) antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+) response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+) response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation must also be taken into account during the rational design of antiviral vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Vaccinia virus/imunologia , Animais , Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Classe II , Humanos
2.
Immunology ; 119(1): 63-73, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16764686

RESUMO

CD8+ T cells play a crucial role in protective immunity to viruses and tumours. Antiviral CD8+ T cells are initially activated by professional antigen presenting cells (pAPCs) that are directly infected by viruses (direct-priming) or following uptake of exogenous antigen transferred from virus-infected or tumour cells (cross-priming). In order to efficiently target each of these antigen-processing pathways during vaccine design, it is necessary to delineate the properties of the natural substrates for either of these antigen-processing pathways. In this study, we utilized a novel T-cell receptor (TCR) transgenic mouse to examine the requirement for both antigen synthesis and synthesis of other cellular factors during direct or cross-priming. We found that direct presentation required ongoing synthesis of antigen, but that cross-priming favoured long-lived antigens and did not require ongoing antigen production. Even after prolonged blockade of protein synthesis in the donor cell, cross-priming was unaffected. In contrast, direct-presentation was almost undetectable in the absence of antigen neosynthesis and required ongoing protein synthesis. This suggests that the direct- and cross-priming pathways may utilize differing pools of antigen, an observation that has far-reaching implications for the rational design of vaccines aimed at the generation of protective CD8+ T cells.


Assuntos
Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/fisiologia , Viroses/imunologia , Transferência Adotiva/métodos , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Antígenos/biossíntese , Linhagem Celular , Cicloeximida/farmacologia , Eletroporação , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/imunologia , Neoplasias/prevenção & controle , Inibidores da Síntese de Proteínas/farmacologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Viroses/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...