Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 11(1): 834-845, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31932826

RESUMO

A substantial fraction of ingested polyphenols accumulate in the large intestine (LI), attached to undigested plant cell walls (PCW) (dietary fibre). Yet, whether these PCW-bound polyphenols alter the structure and function of the resident microbiota remains unclear. This study characterised bacterial populations during the in vitro fermentation of three standard polyphenols: ferulic acid (FER), (±)-catechin (CAT), and cyanidin-3-glucoside (CYAN), adsorbed individually or in combination to apple cell walls (ACW). During fermentation with porcine faeces, samples were collected at regular time-points (up to 72 hours) for bacterial 16S rRNA gene amplicon sequencing and fermentation end-product analyses (short-chain fatty acids and ammonium). The metabolic end-products differed to only a small extent between substrates, though significantly for propionate (P < 0.0001). Significant differences in microbial populations were noted between substrates tested (P < 0.0001). The presence of cyanidin-3-glucoside resulted in the most significant differences between bacterial communities during fermentation of the ACW substrate. Key microbes identified to be associated with the ACW with adsorbed polyphenols as well as individual polyphenols were: Phascolarctobacterium with ACW + FER and FER, the Lachnospiraceae family with ACW + CYAN, Parabacteroides with ACW + CYAN and CYAN, Collinsella and Coprococcus with ACW + CAT, and the Clostridiales order with ACW + CAT and CAT. This study has demonstrated the use of a simplified model to indicate any microbial effects of polyphenols associated with dietary fibre in whole fruits. This work has shown that individual polyphenols, or those adsorbed to PCW, have potentially very different effects on the gut bacteria. Future work could examine further polyphenols associated with a range of fresh fruits.


Assuntos
Fibras na Dieta/farmacologia , Fermentação/efeitos dos fármacos , Malus , Polifenóis/farmacologia , Animais , Parede Celular/química , Fezes/microbiologia , Técnicas In Vitro , Masculino , Células Vegetais/química , Polifenóis/química , Suínos
2.
Int J Mol Sci ; 18(10)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29053599

RESUMO

The majority of dietary fibre (DF) originates from plant cell walls. Chemically, DF mostly comprise carbohydrate polymers, which resist hydrolysis by digestive enzymes in the mammalian small intestine, but can be fermented by large intestinal bacteria. One of the main benefits of DF relate to its fermentability, which affects microbial diversity and function within the gastro-intestinal tract (GIT), as well as the by-products of the fermentation process. Much work examining DF tends to focus on various purified ingredients, which have been extracted from plants. Increasingly, the validity of this is being questioned in terms of human nutrition, as there is evidence to suggest that it is the actual complexity of DF which affects the complexity of the GIT microbiota. Here, we review the literature comparing results of fermentation of purified DF substrates, with whole plant foods. There are strong indications that the more complex and varied the diet (and its ingredients), the more complex and varied the GIT microbiota is likely to be. Therefore, it is proposed that as the DF fermentability resulting from this complex microbial population has such profound effects on human health in relation to diet, it would be appropriate to include DF fermentability in its characterization-a functional approach of immediate relevance to nutrition.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fibras na Dieta/metabolismo , Trato Gastrointestinal/microbiologia , Animais , Fibras na Dieta/análise , Fermentação , Microbioma Gastrointestinal , Humanos , Plantas/metabolismo
3.
Eur J Nutr ; 56(6): 2193-2206, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27401929

RESUMO

PURPOSE: To investigate the effects of two cereal soluble dietary fibres (SDF), wheat arabinoxylan (AX) and oat-mixed linkage glucans (MLG), on fermentative end-products and bacterial community profiles of the porcine caecum (Cae) and distal colon (DC). We hypothesised that feeding pigs these SDF would stimulate Cae and DC carbohydrate fermentation, resulting in a modification of the resident bacterial communities. METHODS: Five groups of six pigs were each fed one diet based on wheat starch (WS) only, or treatment diets in which some WS was replaced by 10 % AX, or 10 % MLG, a combination of 5 % AX:5 % MLG (AXMLG), or completely replaced with ground whole wheat. Post-euthanasia, Cae and DC digesta were collected for analysis of fermentative end-products, and bacterial community profiles were determined by 16S rRNA gene amplicon 454 pyrosequencing. RESULTS: Across all the SDF-containing diets, predominantly in the proximal region of the large intestine, Prevotella, Lactobacillus, Mitsuokella and Streptococcus were most significantly influenced (P < 0.05), while notable changes were observed for the Ruminococcaceae and Lachnospiraceae families in the Cae and DC. The addition of MLG or AXMLG had the greatest effect of influencing bacterial profiles, reducing sequence proportions assigned to the genus Clostridium, considered detrimental to gut health, with associated increases in short-chain fatty acid and reduced ammonia concentrations. CONCLUSIONS: This study demonstrated how the cereal SDF AX and MLG altered the large intestinal bacterial community composition, particularly proximally, further giving insights into how diets rich in specific complex carbohydrates shift the bacterial population, by increasing abundance and promoting greater diversity of those bacteria considered beneficial to gut health.


Assuntos
Ração Animal , Ceco/microbiologia , Microbioma Gastrointestinal , Glucanos/administração & dosagem , Xilanos/administração & dosagem , Animais , Ceco/efeitos dos fármacos , Dieta/veterinária , Fibras na Dieta/administração & dosagem , Grão Comestível/química , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Fermentação , Lactobacillus/isolamento & purificação , Prevotella/isolamento & purificação , RNA Ribossômico 16S/isolamento & purificação , Amido/química , Streptococcus/isolamento & purificação , Suínos , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...