Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Microbiol ; 5: 131, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24765087

RESUMO

Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5-nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12-nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 µmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12-nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 µmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers.

2.
Biosci Biotechnol Biochem ; 70(12): 3046-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17151454

RESUMO

The biosynthesis of the chlorinated amino acid [R-(Z)]-4-amino-3-chloro-2-pentenedioic acid (ACPA) was investigated. Feeding studies with Streptomyces viridogenes were conducted in resting cells. Substantial incorporation from [(15)N]- and [(13)C]-enriched glutamate and proline indicated that the biosynthetic origin of ACPA is one of these amino acids. Experiments with deuterated glutamate and proline imply that chlorination does not occur via a radical mechanism, but rather suggest that a FADH(2)-dependent halogenase is involved.


Assuntos
Streptomyces/metabolismo , Glutamatos/biossíntese , Espectrometria de Massa de Íon Secundário , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...