Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172777, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670384

RESUMO

Along urban streams and rivers, various processes, including road salt application, sewage leaks, and weathering of the built environment, contribute to novel chemical cocktails made up of metals, salts, nutrients, and organic matter. In order to track the impacts of urbanization and management strategies on water quality, we conducted longitudinal stream synoptic (LSS) monitoring in nine watersheds in five major metropolitan areas of the U.S. During each LSS monitoring survey, 10-53 sites were sampled along the flowpath of streams as they flowed along rural to urban gradients. Results demonstrated that major ions derived from salts (Ca2+, Mg2+, Na+, and K+) and correlated elements (e.g. Sr2+, N, Cu) formed 'salty chemical cocktails' that increased along rural to urban flowpaths. Salty chemical cocktails explained 46.1% of the overall variability in geochemistry among streams and showed distinct typologies, trends, and transitions along flowpaths through metropolitan regions. Multiple linear regression predicted 62.9% of the variance in the salty chemical cocktails using the six following significant drivers (p < 0.05): percent urban land, wastewater treatment plant discharge, mean annual precipitation, percent silicic residual material, percent volcanic material, and percent carbonate residual material. Mean annual precipitation and percent urban area were the most important in the regression, explaining 29.6% and 13.0% of the variance. Different pollution sources (wastewater, road salt, urban runoff) in streams were tracked downstream based on salty chemical cocktails. Streams flowing through stream-floodplain restoration projects and conservation areas with extensive riparian forest buffers did not show longitudinal increases in salty chemical cocktails, suggesting that there could be attenuation via conservation and restoration. Salinization represents a common urban water quality signature and longitudinal patterns of distinct chemical cocktails and ionic mixtures have the potential to track the sources, fate, and transport of different point and nonpoint pollution sources along streams across different regions.

2.
Water Res ; 249: 120997, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091697

RESUMO

Sanitary sewer systems are critical urban water infrastructure that protect both human and environmental health. Their design, operation, and monitoring require novel modeling techniques that capture dominant processes while allowing for computationally efficient simulations. Open water flow in sewers and rivers are intrinsically similar processes. With this in mind, we formulated a new parsimonious model inspired by the Width Function Instantaneous Unit Hydrograph (WFIUH) approach, widely used to predict rainfall-runoff relationships in watersheds, to a sanitary sewer system consisting of nearly 10,000 sewer conduits and 120,000 residential and commercial sewage connections in Northern Virginia, U.S.A. Model predictions for the three primary components of sanitary flow, including Base Wastewater Flow (BWF), Groundwater Infiltration (GWI), and Runoff Derived Infiltration and Inflow (RDII), compare favorably with the more computationally demanding industry-standard Storm Water Management Model (SWMM). This novel application of the WFIUH modeling framework should support a number of critical water quality endpoints, including (i) sewer hydrograph separation through the quantification of BWF, GWI, and RDII outflows, (ii) evaluation of the impact of new urban developments on sewage flow dynamics, (iii) monitoring and mitigation of sanitary sewer overflows, and (iv) design and interpretation of wastewater surveillance studies.


Assuntos
Água Subterrânea , Águas Residuárias , Humanos , Esgotos/química , Vigilância Epidemiológica Baseada em Águas Residuárias , Qualidade da Água
3.
Front Environ Sci ; 11: 1-20, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37841559

RESUMO

Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed "chemical cocktails", in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.

4.
Limnol Oceanogr Lett ; 8(1): 190-211, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539375

RESUMO

Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.

5.
Front Environ Sci ; 11: 1-28, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475839

RESUMO

There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions.

6.
Water Res ; 230: 119501, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587519

RESUMO

Nitrogen (N) in urban runoff is often treated with green infrastructure including biofilters. However, N fates across biofilters are insufficiently understood because prior studies emphasize low N loading under laboratory conditions, or use "steady-state" flow regimes over short time scales. Here, we tested field scale biofilter N fates during simulated storms delivering realistic transient flows with high N loading. Biofilter outflow ammonium (NH4+-N) was 60.7 to 92.3% lower than that of the inflow. Yet the characteristic times for nitrification (days to weeks) and denitrification (days) relative to N residence times (7 to 30 h) suggested low N transformation across the biofilters. Still, across 7 successive storms, total outflow nitrate (NO3--N) greatly exceeded (3100 to 3900%) inflow nitrate, a result only explainable by biofilter soil N nitrification occurring between storms. Archaeal, and bacterial amoA gene copies (2.1 × 105 to 1.2 × 106 gc g soil-1), nitrifier presence by16S rRNA gene sequencing, and outflow δ18O-NO3- values (-3.0 to 17.1 ‰) reinforced that nitrification was occurring. A ratio of δ18O-NO3- to δ15N-NO3- of 1.83 for soil eluates indicated additional processes: N assimilation, and N mineralization. Denitrification potential was suggested by enzyme activities and soil denitrifying gene copies (nirK + nirS: 3.0 × 106 to 1.8 × 107; nosZ: 5.0 × 105 to 2.2 × 106 gc g soil-1). However, nitrous oxide (N2O-N) emissions (13.5 to 84.3 µg N m - 2 h - 1) and N2O export (0.014 g N) were low, and soil nitrification enzyme activities (0.45 to 1.63 mg N kg soil-1day-1) exceeded those for denitrification (0.17 to 0.49 mg N kg soil-1 day-1). Taken together, chemical, bacterial, and isotopic metrics evidenced that storm inflow NH4+sorbs and, along with mineralized soil N, nitrifies during biofilter dry-down; little denitrification and associated N2O emissions ensue, and thus subsequent storms export copious NO3--N. As such, pulsed pass-through biofilters require redesign to promote plant assimilation and/or denitrification of mineralized and nitrified N, to minimize NO3--N generation and export.


Assuntos
Compostos de Amônio , Nitrogênio , Desnitrificação , Nitratos , Óxido Nitroso/análise , Microbiologia do Solo , Nitrificação , Solo/química
7.
Nat Rev Earth Environ ; 4: 770-784, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38515734

RESUMO

Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.

8.
Environ Sci Technol ; 56(19): 13517-13527, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103712

RESUMO

Freshwater salinity is rising across many regions of the United States as well as globally, a phenomenon called the freshwater salinization syndrome (FSS). The FSS mobilizes organic carbon, nutrients, heavy metals, and other contaminants sequestered in soils and freshwater sediments, alters the structures and functions of soils, streams, and riparian ecosystems, threatens drinking water supplies, and undermines progress toward many of the United Nations Sustainable Development Goals. There is an urgent need to leverage the current understanding of salinization's causes and consequences─in partnership with engineers, social scientists, policymakers, and other stakeholders─into locally tailored approaches for balancing our nation's salt budget. In this feature, we propose that the FSS can be understood as a common pool resource problem and explore Nobel Laureate Elinor Ostrom's social-ecological systems framework as an approach for identifying the conditions under which local actors may work collectively to manage the FSS in the absence of top-down regulatory controls. We adopt as a case study rising sodium concentrations in the Occoquan Reservoir, a critical water supply for up to one million residents in Northern Virginia (USA), to illustrate emerging impacts, underlying causes, possible solutions, and critical research needs.


Assuntos
Água Potável , Ecossistema , Carbono , Água Doce/química , Sódio , Solo , Estados Unidos
9.
Water Res ; 219: 118525, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533621

RESUMO

Green stormwater infrastructure systems, such as biofilters, provide many water quality and other environmental benefits, but their ability to remove human pathogens and antibiotic resistance genes (ARGs) from stormwater runoff is not well documented. In this study, a field scale biofilter in Southern California (USA) was simultaneously evaluated for the breakthrough of a conservative tracer (bromide), conventional fecal indicators, bacterial and viral human-associated fecal source markers (HF183, crAssphage, and PMMoV), ARGs, and bacterial and viral pathogens. When challenged with a 50:50 mixture of untreated sewage and stormwater (to mimic highly contaminated storm flow) the biofilter significantly removed (p < 0.05) 14 of 17 microbial markers and ARGsin descending order of concentration reduction: ermB (2.5 log(base 10) reduction) > Salmonella (2.3) > adenovirus (1.9) > coliphage (1.5) > crAssphage (1.2) > E. coli (1.0) ∼ 16S rRNA genes (1.0) ∼ fecal coliform (1.0) ∼ intl1 (1.0) > Enterococcus (0.9) ∼ MRSA (0.9) ∼ sul1 (0.9) > PMMoV (0.7) > Entero1A (0.5). No significant removal was observed for GenBac3, Campylobacter, and HF183. From the bromide data, we infer that 0.5 log-units of attenuation can be attributed to the dilution of incoming stormwater with water stored in the biofilter; removal above this threshold is presumably associated with non-conservative processes, such as physicochemical filtration, die-off, and predation. Our study documents high variability (>100-fold) in the removal of different microbial contaminants and ARGs by a field-scale stormwater biofilter operated under transient flow and raises further questions about the utility of human-associated fecal source markers as surrogates for pathogen removal.


Assuntos
Antibacterianos , Escherichia coli , Brometos , Resistência Microbiana a Medicamentos/genética , Fezes/microbiologia , Humanos , RNA Ribossômico 16S , Microbiologia da Água
10.
J Hazard Mater ; 424(Pt B): 127469, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655877

RESUMO

The synergetic effects of metal(loid)s and soil characteristics on bacterial antibiotic resistance genes (ARGs) in green stormwater infrastructure (GSI) has been relatively understudied. Surface soil samples from six GSIs in Southern California over three time periods were assessed for selected ARGs, class 1 integron-integrase genes (intI1), 16S rRNA genes, and bioavailable and total concentrations of nine metal(loid)s, to investigate the relationships among ARGs, soil characteristics, and co-occurring metal(loid)s. Significant correlations existed among relative gene abundances (sul1, sul2, tetW, and intI1), total metal(loid)s (arsenic, copper, lead, vanadium, and zinc), and bioavailable metal(loid) (arsenic) (r = 0.29-0.61, padj < 0.05). Additionally, soil texture, organic matter, and nutrients within GSI appeared to be significantly correlated with relative gene abundances of sul1, sul2, and tetW (r = -0.57 to 0.59, padj < 0.05). Multiple regression models significantly improved the estimation of ARGs in GSI when considering multiple effects of soil characteristics and metal(loid)s (r = 0.74, padj < 0.001) compared to correlation results. Total arsenic was a significant (positive) correlate in all the regression models of relative gene abundances. This work provides new insights into co-dependencies between GSI ARGs and co-occurring metal(loid)s, indicating the need for risk assessment of metal(loid)-influenced ARG proliferation.


Assuntos
Antibacterianos , Solo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Genes Bacterianos , RNA Ribossômico 16S , Microbiologia do Solo
11.
Environ Sci Technol ; 55(13): 9199-9208, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106689

RESUMO

In urban areas, untreated stormwater runoff can pollute downstream surface waters. To intercept and treat runoff, low-impact or "green infrastructure" approaches such as using biofilters are adopted. Yet, actual biofilter pollutant removal is poorly understood; removal is often studied in laboratory columns, with variable removal of viable and culturable microbial cell numbers including pathogens. Here, to assess bacterial pollutant removal in full-scale planted biofilters, stormwater was applied, unspiked or spiked with untreated sewage, in simulated storm events under transient flow conditions, during which biofilter influents versus effluents were compared. Based on microbial biomass, sequences of bacterial community genes encoding 16S rRNA, and gene copies of the human fecal marker HF183 and of the Enterococcus spp. marker Entero1A, removal of bacterial pollutants in biofilters was limited. Dominant bacterial taxa were similar for influent versus effluent aqueous samples within each inflow treatment of either spiked or unspiked stormwater. Bacterial pollutants in soil were gradually washed out, albeit incompletely, during simulated storm flushing events. In post-storm biofilter soil cores, retained influent bacteria were concentrated in the top layers (0-10 cm), indicating that the removal of bacterial pollutants was spatially limited to surface soils. To the extent that plant-associated processes are responsible for this spatial pattern, treatment performance might be enhanced by biofilter designs that maximize influent contact with the rhizosphere.


Assuntos
Filtração , Purificação da Água , Bactérias/genética , Humanos , RNA Ribossômico 16S/genética , Chuva , Solo
12.
Environ Manage ; 67(1): 12-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33150485

RESUMO

U.S. public university campuses are held directly responsible for compliance with many of the same federal- and state-level environmental regulations as cities, including stormwater management. While operating as 'cities within cities' in many respects, campuses face unique constraints in achieving stormwater regulatory compliance. To compare the abilities of campuses to comply with stormwater regulations to municipalities, we conduct mixed-methods research using primary data from five University of California (UC) campuses. Public universities constituted over 20% of California's "nontraditional" permittees under the municipal separate storm sewer system (MS4) regulation regime in 2013. We utilize semi-structured interviews with campus and regulatory officials, a survey of campus students and staff around support and willingness to pay for innovative stormwater management, and content analysis of campus stormwater management documents to examine challenges to public university stormwater compliance. We find that, despite their progressive environmental practices in other areas like energy and water conservation, even as compared to cities, stormwater management practices on the evaluated campuses are constrained by several factors: infrastructure financing limitations, lack of transparent and coordinated decision-making, a lack of campus resident involvement, and regulatory inflexibility. Our study provides new insights, both for understanding campuses as sustainable 'cities within cities' and more broadly for urban environmental compliance regimes globally.


Assuntos
Chuva , Universidades , Cidades , Humanos
13.
Water Res ; 137: 310-323, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29558669

RESUMO

Constructed stormwater wetlands provide a host of ecosystem services, including potentially pathogen removal. We present results from a multi-wetland study that integrates across weather, chemical, microbiological and engineering design variables in order to identify patterns of microbial contaminant removal from inlet to outlet within wetlands and key drivers of those patterns. One or more microbial contaminants were detected at the inlet of each stormwater wetland (Escherichia coli and Enterococcus > Bacteroides HF183 > adenovirus). Bacteroides HF183 and adenovirus concentrations declined from inlet to outlet at all wetlands. However, co-removal of pathogens and fecal indicator bacteria only occurred at wetlands where microbial assemblages at the inlet (dominated by Proteobacteria and Bacteriodetes) were largely displaced by indigenous autotrophic microbial communities at the outlet (dominated by Cyanobacteria). Microbial community transitions (characterized using pyrosequencing) were well approximated by a combination of two rapid indicators: (1) fluorescent dissolved organic matter, and (2) chlorophyll a or phaeophytin a fluorescence. Within-wetland treatment of fecal markers and indicators was not strongly correlated with the catchment-to-wetland area ratio, but was diminished in older wetlands, which may point to a need for more frequent maintenance.


Assuntos
Poluentes Ambientais/isolamento & purificação , Fezes , Poluição da Água/prevenção & controle , Áreas Alagadas , California , Clorofila , Clorofila A , Cianobactérias , Ecossistema , Enterococcus , Fezes/química , Fezes/microbiologia , Consórcios Microbianos , Proteobactérias , Fatores de Tempo , Vitória
14.
Science ; 359(6381): 1266-1269, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29590077

RESUMO

The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle.


Assuntos
Ciclo do Nitrogênio , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Ecossistema , Nitratos/análise
15.
Ecol Appl ; 27(6): 1852-1861, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28482116

RESUMO

One of the goals of urban ecology is to link community structure to ecosystem function in urban habitats. Pollution-tolerant wetland invertebrates have been shown to enhance greenhouse gas (GHG) flux in controlled laboratory experiments, suggesting that they may influence urban wetland roles as sources or sinks of GHG. However, it is unclear if their effects can be detected in highly variable conditions in a field setting. Here we use an extensive data set on carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) flux in sediment cores (n = 103) collected from 10 urban wetlands in Melbourne, Australia during summer and winter in order to test for invertebrate enhancement of GHG flux. We detected significant multiplicative enhancement effects of temperature, sediment carbon content, and invertebrate density on CH4 and CO2 flux. Each doubling in density of oligochaete worms or large benthic invertebrates (oligochaete worms and midge larvae) corresponded to ~42% and ~15% increases in average CH4 and CO2 flux, respectively. However, despite exceptionally high densities, invertebrates did not appear to enhance N2 O flux. This was likely due to fairly high organic carbon content in sediments (range 2.1-12.6%), and relatively low nitrate availability (median 1.96 µmol/L NO3- -N), which highlights the context-dependent nature of community structural effects on ecosystem function. The invertebrates enhancing GHG flux in this study are ubiquitous, and frequently dominate faunal communities in impaired aquatic ecosystems. Therefore, invertebrate effects on CO2 and CH4 flux may be common in wetlands impacted by urbanization, and urban wetlands may make greater contributions to the total GHG budgets of cities if the negative impacts of urbanization on wetlands are left unchecked.


Assuntos
Dióxido de Carbono/metabolismo , Gases de Efeito Estufa/metabolismo , Invertebrados/metabolismo , Metano/metabolismo , Nitratos/metabolismo , Áreas Alagadas , Animais , Chironomidae/metabolismo , Cidades , Sedimentos Geológicos/química , Oligoquetos/metabolismo , Densidade Demográfica , Estações do Ano , Vitória
16.
Environ Sci Technol ; 51(10): 5703-5712, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28445642

RESUMO

Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.


Assuntos
Enterobacteriaceae , Purificação da Água , Bactérias , Meio Ambiente , Fezes , Filtração , Chuva
17.
Water Res ; 111: 318-329, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28104518

RESUMO

For many coastal regions around the world, recreational beach water quality is assessed using fecal indicator bacteria (FIB). However, the utility of FIB as indicators of recreational water illness (RWI) risk has been questioned, particularly in coastal settings with no obvious sources of human sewage. In this study we employed a source-apportionment quantitative microbial risk assessment (SA-QMRA) to assess RWI risk at a popular semi-enclosed recreational beach in Southern California (Baby Beach, City of Dana Point) with no obvious point sources of human sewage. Our SA-QMRA results suggest that, during dry weather, the median RWI risk at this beach is below the U.S. EPA recreational water quality criteria (RWQC) of 36 illness cases per 1000 bathers. During wet weather, the median RWI risk predicted by SA-QMRA depends on the assumed level of human waste associated with stormwater; the RWI risk is below the EPA RWQC illness risk benchmark 100% of the time provided that <2% of the FIB in stormwater are of human origin. However, these QMRA outcomes contrast strongly with the EPA RWQC for 30-day geometric mean of enterococci bacteria. Our results suggest that SA-QMRA is a useful framework for estimating robust RWI risk that takes into account local information about possible human and non-human sources of FIB.


Assuntos
Praias , Microbiologia da Água , California , Monitoramento Ambiental , Fezes/microbiologia , Humanos , Tempo (Meteorologia)
18.
Environ Sci Technol ; 50(23): 12557-12566, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27802028

RESUMO

Cities in drought prone regions of the world such as South East Australia are faced with escalating water scarcity and security challenges. Here we use 72 years of urban water consumption data from Melbourne, Australia, a city that recently overcame a 12 year "Millennium Drought", to evaluate (1) the relative importance of climatic and anthropogenic drivers of urban water demand (using wavelet-based approaches) and (2) the relative contribution of various water saving strategies to demand reduction during the Millennium Drought. Our analysis points to conservation as a dominant driver of urban water savings (69%), followed by nonrevenue water reduction (e.g., reduced meter error and leaks in the potable distribution system; 29%), and potable substitution with alternative sources like rain or recycled water (3%). Per-capita consumption exhibited both climatic and anthropogenic signatures, with rainfall and temperature explaining approximately 55% of the variance. Anthropogenic controls were also strong (up to 45% variance explained). These controls were nonstationary and frequency-specific, with conservation measures like outdoor water restrictions impacting seasonal water use and technological innovation/changing social norms impacting lower frequency (baseline) use. The above-noted nonstationarity implies that wavelets, which do not assume stationarity, show promise for use in future predictive models of demand.


Assuntos
Conservação dos Recursos Naturais , Abastecimento de Água , Cidades , Ingestão de Líquidos , Secas , Chuva
19.
Environ Sci Technol ; 49(19): 11264-80, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26317612

RESUMO

Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality, and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of stormwater that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and preurban land cover. For all but the wettest regions of the world, a much larger volume of stormwater runoff should be harvested than infiltrated to maintain stream hydrology in a preurban state. Efforts to prevent or reverse hydrologic symptoms associated with the urban stream syndrome will therefore require: (1) selecting the right mix of LID technologies that provide regionally tailored ratios of stormwater harvesting and infiltration; (2) integrating these LID technologies into next-generation drainage systems; (3) maximizing potential cobenefits including water supply augmentation, flood protection, improved water quality, and urban amenities; and (4) long-term hydrologic monitoring to evaluate the efficacy of LID interventions.


Assuntos
Cidades , Hidrologia , Chuva , Rios , Filtração/instrumentação , Modelos Teóricos , Água , Movimentos da Água
20.
Environ Sci Technol ; 49(18): 10993-1002, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26287447

RESUMO

Bedforms are a focal point of carbon and nitrogen cycling in streams and coastal marine ecosystems. In this paper, we develop and test a mechanistic model, the "pumping and streamline segregation" or PASS model, for nitrate removal in bedforms. The PASS model dramatically reduces computational overhead associated with modeling nitrogen transformations in bedforms and reproduces (within a factor of 2 or better) previously published measurements and models of biogeochemical reaction rates, benthic fluxes, and in-sediment nutrient and oxygen concentrations. Application of the PASS model to a diverse set of marine and freshwater environments indicates that (1) physical controls on nitrate removal in a bedform include the pore water flushing rate, residence time distribution, and relative rates of respiration and transport (as represented by the Damkohler number); (2) the biogeochemical pathway for nitrate removal is an environment-specific combination of direct denitrification of stream nitrate and coupled nitrification-denitrification of stream and/or sediment ammonium; and (3) permeable sediments are almost always a net source of dissolved inorganic nitrogen. The PASS model also provides a mechanistic explanation for previously published empirical correlations showing denitrification velocity (N2 flux divided by nitrate concentration) declines as a power law of nitrate concentration in a stream (Mulholland et al. Nature, 2008, 452, 202-205).


Assuntos
Biocatálise , Filtração/instrumentação , Sedimentos Geológicos/química , Modelos Teóricos , Nitratos/isolamento & purificação , Desnitrificação , Ecossistema , Nitrificação , Oxigênio/química , Permeabilidade , Rios/química , Água do Mar/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...