Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 42: 191-203, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25063707

RESUMO

Alterations in the neuro-immune axis contribute toward viscerosensory nerve sensitivity and symptoms in Irritable Bowel Syndrome (IBS). Inhibitory factors secreted from immune cells inhibit colo-rectal afferents in health, and loss of this inhibition may lead to hypersensitivity and symptoms. We aimed to determine the immune cell type(s) responsible for opioid secretion in humans and whether this is altered in patients with IBS. The ß-endorphin content of specific immune cell lineages in peripheral blood and colonic mucosal biopsies were compared between healthy subjects (HS) and IBS patients. Peripheral blood mononuclear cell (PBMC) supernatants from HS and IBS patients were applied to colo-rectal sensory afferent endings in mice with post-inflammatory chronic visceral hypersensitivity (CVH). ß-Endorphin was identified predominantly in monocyte/macrophages relative to T or B cells in human PBMC and colonic lamina propria. Monocyte derived ß-endorphin levels and colonic macrophage numbers were lower in IBS patients than healthy subjects. PBMC supernatants from healthy subjects had greater inhibitory effects on colo-rectal afferent mechanosensitivity than those from IBS patients. The inhibitory effects of PBMC supernatants were more prominent in CVH mice compared to healthy mice due to an increase in µ-opioid receptor expression in dorsal root ganglia neurons in CVH mice. Monocyte/macrophages are the predominant immune cell type responsible for ß-endorphin secretion in humans. IBS patients have lower monocyte derived ß-endorphin levels than healthy subjects, causing less inhibition of colonic afferent endings. Consequently, altered immune function contributes toward visceral hypersensitivity in IBS.


Assuntos
Colo/imunologia , Síndrome do Intestino Irritável/imunologia , Leucócitos Mononucleares/metabolismo , Células Receptoras Sensoriais/imunologia , beta-Endorfina/metabolismo , Adulto , Animais , Colo/metabolismo , Colo/fisiopatologia , Feminino , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Células Receptoras Sensoriais/metabolismo
2.
Gut ; 62(10): 1456-65, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22767422

RESUMO

OBJECTIVE: The gut is a major site of contact between immune and sensory systems and evidence suggests that patients with irritable bowel syndrome (IBS) have immune dysfunction. Here we show how this dysfunction differs between major IBS subgroups and how immunocytes communicate with sensory nerves. DESIGN: Peripheral blood mononuclear cell supernatants from 20 diarrhoea predominant IBS (D-IBS) patients, 15 constipation predominant IBS (C-IBS) patients and 36 healthy subjects were applied to mouse colonic sensory nerves and effects on mechanosensitivity assessed. Cytokine/chemokine concentration in the supernatants was assessed by proteomic analysis and correlated with abdominal symptoms, and expression of cytokine receptors evaluated in colonic dorsal root ganglia neurons. We then determined the effects of specific cytokines on colonic afferents. RESULTS: D-IBS supernatants caused mechanical hypersensitivity of mouse colonic afferent endings, which was reduced by infliximab. C-IBS supernatants did not, but occasionally elevated basal discharge. Supernatants of healthy subjects inhibited afferent mechanosensitivity via an opioidergic mechanism. Several cytokines were elevated in IBS supernatants, and levels correlated with pain frequency and intensity in patients. Visceral afferents expressed receptors for four cytokines: IL-1ß, IL-6, IL-10 and TNF-α. TNF-α most effectively caused mechanical hypersensitivity which was blocked by a transient receptor potential channel TRPA1 antagonist. IL-1ß elevated basal firing, and this was lost after tetrodotoxin blockade of sodium channels. CONCLUSIONS: Distinct patterns of immune dysfunction and interaction with sensory pathways occur in different patient groups and through different intracellular pathways. Our results indicate IBS patient subgroups would benefit from selective targeting of the immune system.


Assuntos
Síndrome do Intestino Irritável/imunologia , Neuroimunomodulação/fisiologia , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , Colo/imunologia , Colo/inervação , Constipação Intestinal/etiologia , Constipação Intestinal/imunologia , Meios de Cultivo Condicionados/farmacologia , Citocinas/biossíntese , Diarreia/etiologia , Diarreia/imunologia , Feminino , Gânglios Espinais/imunologia , Humanos , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/fisiopatologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neuroimunomodulação/imunologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Dor/etiologia , Dor/imunologia , Receptores de Citocinas/metabolismo , beta-Endorfina/metabolismo
3.
Mol Genet Metab ; 88(4): 307-14, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16600651

RESUMO

Lysosomal storage disorders (LSD) are chronic progressive diseases that have a devastating impact on the patient and family. Most patients are clinically normal at birth but develop symptoms early in childhood. Despite no curative treatment, a number of therapeutic options are available to improve quality of life. To achieve this, there is a pressing need for newborn screening to identify affected individuals early, before the onset of severe irreversible pathology. We have developed a multiplexed immune-quantification assay of 11 different lysosomal proteins for the identification of individuals with an LSD and evaluated this assay in a retrospective study using blood-spots from; newborns subsequently diagnosed with an LSD (n=19, six different LSD), individuals sampled after diagnosis of an LSD (n=92, 11 different LSD), newborn controls (n=433), and adult controls (n=200). All patients with mucopolysaccharidosis type I (MPS I), MPS II, MPS IIIA, MPS VI, metachromatic leukodystrophy, Niemann-Pick disease type A/B, and multiple sulfatase deficiency could be identified by reduced enzyme levels compared to controls. All mucolipidosis type II/III patients were identified by the elevation of several lysosomal enzymes, above the control range. Most Fabry, Pompe, and Gaucher disease patients were identified from either single protein differences or profiles of multiple protein markers. Newborn screening for multiple LSD is achievable using multiplexed immune-quantification of a panel of lysosomal proteins. With further validation, this method could be readily incorporated into existing screening laboratories and will have a substantial impact on patient management and counseling of families.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Triagem Neonatal , Adulto , Estudos de Casos e Controles , Humanos , Recém-Nascido , Doenças por Armazenamento dos Lisossomos/sangue , Doenças por Armazenamento dos Lisossomos/enzimologia , Proteínas/análise , Proteínas/imunologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...