Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(9): 6502-6509, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787174

RESUMO

We studied monatomic linear carbon chains stabilized by gold nanoparticles attached to their ends and deposited on a solid substrate. We observe spectral features of straight chains containing from 8 to 24 atoms. Low-temperature PL spectra reveal characteristic triplet fine structures that repeat themselves for carbon chains of different lengths. The triplet is invariably composed of a sharp intense peak accompanied by two broader satellites situated 15 and 40 meV below the main peak. We interpret these resonances as an edge-state neutral exciton and positively and negatively charged trions, respectively. The time-resolved PL shows that the radiative lifetime of the observed quasiparticles is about 1 ns, and it increases with the increase of the length of the chain. At high temperatures a nonradiative exciton decay channel appears due to the thermal hopping of carriers between parallel carbon chains. Excitons in carbon chains possess large oscillator strengths and extremely low inhomogeneous broadenings.

2.
Sci Rep ; 10(1): 10719, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612146

RESUMO

Absorption and emission of pristine-like semiconducting monolayers of BN, AlN, GaN, and InN are systematically studied by ab-initio methods. We calculate the absorption spectra for in-plane and out-of-plane light polarization including quasiparticle and excitonic effects. Chemical trends with the cation of the absorption edge and the exciton binding are discussed in terms of the band structures. Exciton binding energies and localization radii are explained within the Rytova-Keldysh model for excitons in two dimensions. The strong excitonic effects are due to the interplay of low dimensionality, confinement effects, and reduced screening. We find exciton radiative lifetimes ranging from tenths of picoseconds (BN) to tenths of nanoseconds (InN) at room temperature, thus making 2D nitrides, especially InN, promising materials for light-emitting diodes and high-performance solar cells.

3.
Nat Commun ; 11(1): 82, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900390

RESUMO

Development of on-chip integrated carbon-based optoelectronic nanocircuits requires fast and non-invasive structural characterization of their building blocks. Recent advances in synthesis of single wall carbon nanotubes and graphene nanoribbons allow for their use as atomically precise building blocks. However, while cataloged experimental data are available for the structural characterization of carbon nanotubes, such an atlas is absent for graphene nanoribbons. Here we theoretically investigate the optical absorption resonances of armchair carbon nanotubes and zigzag graphene nanoribbons continuously spanning the tube (ribbon) transverse sizes from 0.5(0.4) nm to 8.1(12.8) nm. We show that the linear mapping is guaranteed between the tube and ribbon bulk resonance when the number of atoms in the tube unit cell is [Formula: see text], where [Formula: see text] is the number of atoms in the ribbon unit cell. Thus, an atlas of carbon nanotubes optical transitions can be mapped to an atlas of zigzag graphene nanoribbons.

4.
Sci Rep ; 8(1): 3534, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476113

RESUMO

We investigate electronic and optical properties of the topological Weyl semimetals TaAs, TaP, NbAs and NbP crystallizing in bct geometry by means of the ab initio density functional theory with spin-orbit interaction within the independent-particle approximation. The small energetical overlap of Ta5d or Nb4d derived conduction and valence bands leads to electron and/or hole pockets near the Fermi energy at the 24 Weyl nodes. The nodes give rise to two-(three-)dimensional Dirac cones for the W1 (W2) Weyl type. The band dispersion and occupation near the Weyl nodes determine the infrared optical properties. They are dominated by interband transitions, which lead to a deviation from the expected constant values of the imaginary part of the dielectric function. The resulting polarization anisotropy is also visible in the real part of the optical conductivity, whose lineshape deviates from the expected linearity. The details of the Weyl nodes are discussed in relation to recent ARPES results for TaAs and NbP, and compared with measured optical spectra for TaAs. The spectral features of the anisotropic and tilted Weyl fermions are restricted to low excitation energies above absorption onsets due to the band occupation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...