Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016685

RESUMO

Neurofibromatosis type 1, a genetic disorder caused by germline mutations in NF1, predisposes patients to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas, and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors such as glioblastoma (GBM), melanoma, breast, ovarian, and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102. Treatment of cells with Y102 perturbed autophagy, mitophagy, and lysosome positioning in NF1-deficient cells. A dual proteomics approach identified the BORC complex, which is required for lysosome positioning and trafficking, as a potential target of Y102. Knockdown of a BORC complex subunit using siRNA recapitulated the phenotypes observed with Y102 treatment. Our findings demonstrate that the BORC complex may be a promising therapeutic target for NF1-deficient tumors.

2.
J Vis Exp ; (201)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38009744

RESUMO

In cryogenic electron microscopy (cryoEM), purified macromolecules are applied to a grid bearing a holey carbon foil; the molecules are then blotted to remove excess liquid and rapidly frozen in a roughly 20-100 nm thick layer of vitreous ice, suspended across roughly 1 µm wide foil holes. The resulting sample is imaged using cryogenic transmission electron microscopy, and after image processing using suitable software, near-atomic resolution structures can be determined. Despite cryoEM's widespread adoption, sample preparation remains a severe bottleneck in cryoEM workflows, with users often encountering challenges related to samples behaving poorly in the suspended vitreous ice. Recently, methods have been developed to modify cryoEM grids with a single continuous layer of graphene, which acts as a support surface that often increases particle density in the imaged area and can reduce interactions between particles and the air-water interface. Here, we provide detailed protocols for the application of graphene to cryoEM grids and for rapidly assessing the relative hydrophilicity of the resulting grids. Additionally, we describe an EM-based method to confirm the presence of graphene by visualizing its characteristic diffraction pattern. Finally, we demonstrate the utility of these graphene supports by rapidly reconstructing a 2.7 Å resolution density map of a Cas9 complex using a pure sample at a relatively low concentration.


Assuntos
Grafite , Microscopia Crioeletrônica/métodos , Grafite/química , Gelo , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
3.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546934

RESUMO

In cryogenic electron microscopy (cryo-EM), purified macromolecules are typically applied to a grid bearing a holey carbon foil, blotted to remove excess liquid and rapidly frozen in a roughly 20-100 nm thick layer of vitreous ice that is suspended across roughly 1 µm-wide foil holes. The resulting sample is then imaged using cryogenic transmission electron microscopy and, after substantial image processing, near-atomic resolution structures can be determined. Despite cryo-EM's widespread adoption, sample preparation remains a severe bottleneck in cryo-EM workflows, with users often encountering challenges related to samples behaving poorly in the suspended vitreous ice. Recently, methods have been developed to modify cryo-EM grids with a single continuous layer of graphene, which acts as a support surface that often increases particle density in the imaged area and can reduce interactions between particles and the air-water interface. Here, we provide detailed protocols for the application of graphene to cryo-EM grids, and for rapidly assessing the relative hydrophilicity of the resulting grids. Additionally, we describe an EM-based method to confirm the presence of graphene by visualizing its characteristic diffraction pattern. Finally, we demonstrate the utility of these graphene supports by rapidly reconstructing a 2.7 Å resolution density map of an exemplar Cas9 complex using a highly pure sample at a relatively low concentration.

4.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376626

RESUMO

Expression of viral genes and activation of innate antiviral responses during infection result in an increase in reactive oxygen species (ROS) and toxic by-products of energy metabolism which can lead to cell death. The mitochondrion and its associated proteins are crucial regulators of these responses and related pathways such as autophagy and apoptosis. Through a mass spectrometry approach, we have shown that the herpes simplex virus 1 (HSV-1) neurovirulence- and autophagy-modulating protein ICP34.5 interacts with numerous mitochondrion-associated factors. Specifically, we showed that amino acids 68 to 87 of ICP34.5, the domain that binds beclin1 and controls neurovirulence, are necessary for interactions with PGAM5, KEAP1, and other regulators of the antioxidant response, mitochondrial trafficking, and programmed cell death. We further show that while this domain interacts with multiple cellular stress response factors, it does not alter apoptosis or antioxidant gene expression. That said, the attenuated replication of a recombinant virus lacking residues 68 to 87 (termed Δ68-87) in primary human fibroblasts was restored by addition of ferric nitrate. Furthermore, in primary mouse neurons, the perinuclear localization of mitochondria that follows infection with HSV-1 was notably absent following Δ68-87 infection. Through this 20-amino-acid domain, ICP34.5 significantly reduces mitochondrial motility in axons of neurons. We propose the hypothesis that ICP34.5 promotes perinuclear mitochondrial localization by modulating transport of mitochondria through interaction with PGAM5. These data expand upon previous observations of altered mitochondrial dynamics following alphaherpesvirus infections and identify a key determinant of this activity during HSV-1 infections.IMPORTANCE Herpes simplex virus persists lifelong in neurons and can reactivate to cause recurrent lesions in mucosal tissues. A key determinant of virulence is the viral protein ICP34.5, of which residues 68 to 87 significantly contribute to neurovirulence through an unknown mechanism. Our report provides evidence that residues 68 to 87 of ICP34.5 are required for binding mitochondrion-associated factors. These interactions alter mitochondrial dynamics in neurons, thereby facilitating viral replication and pathogenesis.


Assuntos
Axônios/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Mitocôndrias/metabolismo , Proteínas Virais/metabolismo , Axônios/patologia , Axônios/virologia , Células HEK293 , Herpes Simples/patologia , Herpesvirus Humano 1/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Domínios Proteicos , Transporte Proteico , Proteínas Virais/genética
5.
Nat Commun ; 10(1): 1757, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988284

RESUMO

Cyclin-dependent kinase 12 (CDK12) modulates transcription elongation by phosphorylating the carboxy-terminal domain of RNA polymerase II and selectively affects the expression of genes involved in the DNA damage response (DDR) and mRNA processing. Yet, the mechanisms underlying such selectivity remain unclear. Here we show that CDK12 inhibition in cancer cells lacking CDK12 mutations results in gene length-dependent elongation defects, inducing premature cleavage and polyadenylation (PCPA) and loss of expression of long (>45 kb) genes, a substantial proportion of which participate in the DDR. This early termination phenotype correlates with an increased number of intronic polyadenylation sites, a feature especially prominent among DDR genes. Phosphoproteomic analysis indicated that CDK12 directly phosphorylates pre-mRNA processing factors, including those regulating PCPA. These results support a model in which DDR genes are uniquely susceptible to CDK12 inhibition primarily due to their relatively longer lengths and lower ratios of U1 snRNP binding to intronic polyadenylation sites.


Assuntos
Quinases Ciclina-Dependentes/genética , Dano ao DNA , Reparo do DNA/genética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Modelos Moleculares , Fosforilação , Poliadenilação , Processamento Pós-Transcricional do RNA , Espectrometria de Massas em Tandem
7.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29472314

RESUMO

Protein-protein interactions have become attractive targets for both experimental and therapeutic interventions. The PSD-95/Dlg1/ZO-1 (PDZ) domain is found in a large family of eukaryotic scaffold proteins that plays important roles in intracellular trafficking and localization of many target proteins. Here, we seek inhibitors of the PDZ protein that facilitates post-endocytic degradation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR): the CFTR-associated ligand (CAL). We develop and validate biochemical screens and identify methyl-3,4-dephostatin (MD) and its analog ethyl-3,4-dephostatin (ED) as CAL PDZ inhibitors. Depending on conditions, MD can bind either covalently or non-covalently. Crystallographic and NMR data confirm that MD attacks a pocket at a site distinct from the canonical peptide-binding groove, and suggests an allosteric connection between target residue Cys319 and the conserved Leu291 in the GLGI motif. MD and ED thus appear to represent the first examples of small-molecule allosteric regulation of PDZ:peptide affinity. Their mechanism of action may exploit the known conformational plasticity of the PDZ domains and suggests that allosteric modulation may represent a strategy for targeting of this family of protein-protein binding modules.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Hidroquinonas/química , Hidroquinonas/farmacologia , Proteínas de Membrana/metabolismo , Domínios PDZ/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Regulação Alostérica/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Proteínas da Matriz do Complexo de Golgi , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras , Metilação , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular
8.
Anal Bioanal Chem ; 409(19): 4615-4625, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28555341

RESUMO

Technological advances in liquid chromatography and tandem mass spectrometry (LC-MS/MS) have enabled comprehensive analyses of proteins and their post-translational modifications from cell culture and tissue samples. However, sample complexity necessitates offline prefractionation via a chromatographic method that is orthogonal to online reversed-phase high-performance liquid chromatography (RP-HPLC). This additional fractionation step improves target identification rates by reducing the complexity of the sample as it is introduced to the instrument. A commonly employed offline prefractionation method is high pH reversed-phase (Hi-pH RP) chromatography. Though highly orthogonal to online RP-HPLC, Hi-pH RP relies on buffers that interfere with electrospray ionization. Thus, samples that are prefractionated using Hi-pH RP are typically desalted prior to LC-MS/MS. In the present work, we evaluate an alternative offline prefractionation method, pentafluorophenyl (PFP)-based reversed-phase chromatography. Importantly, PFP prefractionation results in samples that are dried prior to analysis by LC-MS/MS. This reduction in sample handling relative to Hi-pH RP results in time savings and could facilitate higher target identification rates. Here, we have compared the performances of PFP and Hi-pH RP in offline prefractionation of peptides and phosphopeptides that have been isolated from human cervical carcinoma (HeLa) cells. Given the prevalence of isobaric mass tags for peptide quantification, we evaluated PFP chromatography of peptides labeled with tandem mass tags. Our results suggest that PFP is a viable alternative to Hi-pH RP for both peptide and phosphopeptide offline prefractionation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Fluorbenzenos/isolamento & purificação , Concentração de Íons de Hidrogênio , Fenóis/isolamento & purificação , Fosfoproteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Células HeLa , Humanos
9.
Arthritis Res Ther ; 18: 27, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801089

RESUMO

BACKGROUND: Autoantibody profiles represent important patient stratification markers in systemic sclerosis (SSc). Here, we performed serum-immunoprecipitations with patient antibodies followed by mass spectrometry (LC-MS/MS) to obtain an unbiased view of all possible autoantibody targets and their associated molecular complexes recognized by SSc. METHODS: HeLa whole cell lysates were immunoprecipitated (IP) using sera of patients with SSc clinically positive for autoantibodies against RNA polymerase III (RNAP3), topoisomerase 1 (TOP1), and centromere proteins (CENP). IP eluates were then analyzed by LC-MS/MS to identify novel proteins and complexes targeted in SSc. Target proteins were examined using a functional interaction network to identify major macromolecular complexes, with direct targets validated by IP-Western blots and immunofluorescence. RESULTS: A wide range of peptides were detected across patients in each clinical autoantibody group. Each group contained peptides representing a broad spectrum of proteins in large macromolecular complexes, with significant overlap between groups. Network analyses revealed significant enrichment for proteins in RNA processing bodies (PB) and cytosolic stress granules (SG) across all SSc subtypes, which were confirmed by both Western blot and immunofluorescence. CONCLUSIONS: While strong reactivity was observed against major SSc autoantigens, such as RNAP3 and TOP1, there was overlap between groups with widespread reactivity seen against multiple proteins. Identification of PB and SG as major targets of the humoral immune response represents a novel SSc autoantigen and suggests a model in which a combination of chronic and acute cellular stresses result in aberrant cell death, leading to autoantibody generation directed against macromolecular nucleic acid-protein complexes.


Assuntos
Autoanticorpos/análise , Autoanticorpos/imunologia , Autoantígenos/análise , Autoantígenos/imunologia , Processamento Pós-Transcricional do RNA/imunologia , Escleroderma Sistêmico/imunologia , Adulto , Idoso , Biomarcadores/análise , Feminino , Técnica Indireta de Fluorescência para Anticorpo/métodos , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Escleroderma Sistêmico/patologia , Adulto Jovem
10.
Environ Entomol ; 42(4): 703-10, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23905732

RESUMO

Actinomycetes-a group of antimicrobial producing bacteria-have been successfully cultured and characterized from the nest material of diverse arthropods. Some are symbionts that produce antimicrobial chemicals found to protect nest brood and resources from pathogenic microbes. Others have no known fitness relationship with their associated insects, but have been found to produce antimicrobials in vitro. Consequently, insect nest material is being investigated as a new source of novel antimicrobial producing actinomycetes, which could be harnessed for therapeutic potential. To extend studies of actinomycete-insect associations beyond soil-substrate dwelling insects and wood boring excavators, we conducted a preliminary assessment of the actinomycetes within the nests of the paper wasp, Polistes dominulus (Christ). We found that actinomycetes were readily cultured from nest material across multiple invasive P. dominulus populations-including members of the genera Streptomyces, Micromonospora, and Actinoplanes. Thirty of these isolates were assayed for antimicrobial activity against the challenge bacteria Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Serratia marcescens, and Bacillus subtilis. Sixty percent of isolates inhibited the growth of at least one challenge strain. This study provides the first assessment of bacteria associated with nests of P. dominulus, and the first record of antimicrobial producing actinomycetes isolated from social wasps. We provide a new system to explore nest associated actinomycetes from a ubiquitous and cosmopolitan group of insects.


Assuntos
Actinobacteria/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Vespas/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Bactérias/efeitos dos fármacos , DNA Bacteriano/análise , Massachusetts , Microbiota , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , Análise de Sequência de DNA , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...