Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 46(2): 669-76, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22148466

RESUMO

To reveal what controls the concentration and distribution of possibly hazardous (Mn, U, Se, Cd, Bi, Pb) and nonhazardous (Fe, V, Mo, PO(4)) trace elements in groundwater of the Bengal delta, we mapped their concentrations in shallow groundwater (<60 mbgl) across 102 km(2) of West Bengal. Only Mn is a potential threat to health, with 55% of well water exceeding 0.3 mg/L, the current Indian limit for drinking water in the absence of an alternate source, and 75% exceeding the desirable limit of 0.1 mg/L. Concentrations of V are <3 µg/L. Concentrations of U, Se, Pb, Ni, Bi, and Cd, are below WHO guideline values. The distributions of Fe, Mn, As, V, Mo, U, PO(4), and δ(18)O in groundwater reflect subsurface sedimentology and sources of water. Areas of less negative δ(18)O reveal recharge by sources of evaporated water. Concentrations of Fe, As, Mo, and PO(4) are high in palaeo-channel groundwaters and low in palaeo-interfluvial groundwaters. Concentrations of U, V, and Mn, are low in palaeo-channel groundwaters and high in palaeo-interfluvial groundwaters. Concentrations of Fe and Mn are highest (18 and 6 mg/L respectively) at dual reduction-fronts that form strip interfaces at depth around the edges of palaeo-interfluvial aquifers. The fronts form as focused recharge carries dissolved organic carbon into the aquifer margins, which comprise brown, iron-oxide bearing, sand. At the Mn-reduction front, concentrations of V and Mo reach peak concentrations of 3 µg/L. At the Fe-reduction front, concentrations of PO(4) and As reach concentrations 3 mg/L and 150 µg/L respectively. Many groundwaters contain >10 mg/L of Cl, showing that they are contaminated by Cl of anthropogenic origin and that organic matter from in situ sanitation may contribute to driving reduction.


Assuntos
Sedimentos Geológicos/química , Água Subterrânea/química , Manganês/química , Rios/química , Oligoelementos/química , Ecossistema , Monitoramento Ambiental , Índia
2.
Environ Sci Technol ; 45(4): 1376-83, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21268629

RESUMO

The consumption of groundwater polluted by arsenic (As) has a severe and adverse effect on human health, particularly where, as happens in parts of SE Asia, groundwater is supplied largely from fluvial/deltaic aquifers. The lateral distribution of the As-pollution in such aquifers is heterogeneous. The cause of the heterogeneity is obscure. The location and severity of the As-pollution is therefore difficult to predict, despite the importance of such predictions to the protection of consumer health, aquifer remediation, and aquifer development. To explain the heterogeneity, we mapped As-pollution in groundwater using 659 wells across 102 km(2) of West Bengal, and logged 43 boreholes, to reveal that the distribution of As-pollution is governed by subsurface sedimentology. Across 47 km(2) of contiguous palaeo-interfluve, we found that the shallow aquifer (<70 mbgl) is unpolluted by As (<10 µg/L) because it is capped by an impermeable palaeosol of red clay (the last glacial maximum palaeosol, or LGMP, of ref 1 ) at depths between 16 and 24 mbgl. The LGMP protects the aquifer from vertical recharge that might carry As-rich water or dissolved organic matter that might drive reduction of sedimentary iron oxides and so release As to groundwater. In 55 km(2) of flanking palaeo-channels, the palaeosol is absent, so invasion of the aquifer by As and dissolved organic matter can occur, so palaeo-channel groundwater is mostly polluted by As (>50 µg/L). The role of palaeosols and, in particular, the LGMP, has been overlooked as a control on groundwater flow and pollutant movement in deltaic and coastal aquifers worldwide. Models of pollutant infiltration in such environments must include the appreciation that, where the LGMP (or other palaeosols) are present, recharge moves downward in palaeo-channel regions that are separated by palaeo-interfluvial regions where vertical recharge to underlying aquifers cannot occur and where horizontal flow occurs above the LGMP and any aquifer it caps.


Assuntos
Arsênio/análise , Água Subterrânea/química , Poluentes da Água/análise , Ásia , Sedimentos Geológicos/química , Modelos Teóricos , Compostos Orgânicos , Oxirredução , Movimentos da Água
3.
Anal Chem ; 73(2): 220-5, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11199969

RESUMO

A continuous flow method (CF-IRMS) for the rapid determination of the sulfur isotope composition of sulfide and sulfate minerals has significant advantages over the classic extraction method in terms of the reduced sample quantity and a rapid analytical cycle of less than 8 min/ analysis. For optimum performance, the technique is sensitive to a number of operating parameters, including sample weight and the O2 saturation of the Cu-reduction reactor. Raw data are corrected using a calibration based on five international and internal standards ranging from -17.3 to +20.3 per thousand, which requires monitoring in order to correct the effect of changing delta18O of the sample gas on the measured mass 66 values. Measured sulfur contents are within 1-1.5% of expected values and the reproducibility of delta34S values is +/-0.1 per thousand (1sigma). The technique has been used successfully for more than 1000 analyses of geological samples with a wide range of delta34S from -20 to +20 per thousand.

4.
Proc Biol Sci ; 268(1463): 113-9, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11209879

RESUMO

Sulphur and carbon isotopic analyses on small samples of kerogens and sulphide minerals from biogenic and non-biogenic sediments of the 2.7 x 10(9) years(Ga)-old Belingwe Greenstone Belt (Zimbabwe) imply that a complex biological sulphur cycle was in operation. Sulphur isotopic compositions display a wider range of biological fractionation than hitherto reported from the Archaean. Carbon isotopic values in kerogen record fractionations characteristic of rubisco activity methanogenesis and methylotrophy and possibly anoxygenic photosynthesis. Carbon and sulphur isotopic fractionations have been interpreted in terms of metabolic processes in 2.7 Ga prokaryote mat communities, and indicate the operation of a diverse array of metabolic processes. The results are consistent with models of early molecular evolution derived from ribosomal RNA.


Assuntos
Archaea/metabolismo , Isótopos de Carbono/análise , Sedimentos Geológicos/microbiologia , Isótopos de Enxofre/análise , Enxofre/metabolismo , Paleontologia , Fotossíntese , Zimbábue
5.
Science ; 289(5482): 1182-5, 2000 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-10947983

RESUMO

Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...