Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 17(3): 495-506, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37294653

RESUMO

Closed-loop neural implants based on continuous brain activity recording and intracortical microstimulation are extremely effective and promising devices to monitor and address many neurodegenerative diseases. The efficiency of these devices depends on the robustness of the designed circuits which rely on precise electrical equivalent models of the electrode/brain interface. This is true in the case of amplifiers for differential recording, voltage or current drivers for neurostimulation, and potentiostats for electrochemical bio-sensing. This is of paramount importance, especially for the next generation of wireless and ultra-miniaturised CMOS neural implants. Circuits are usually designed and optimized considering the electrode/brain impedance with a simple electrical equivalent model whose parameters are stationary over time. However, the electrode/brain interfacial impedance varies simultaneously in frequency and in time after implantation. The aim of this study is to monitor the impedance changes occurring on microelectrodes inserted in ex-vivo porcine brains to derive an opportune electrode/brain model describing the system and its evolution in time. In particular, impedance spectroscopy measurements have been performed for 144 hours to characterise the evolution of the electrochemical behaviour in two different setups analysing both the neural recording and the chronic stimulation scenarios. Then, different equivalent electrical circuit models have been proposed to describe the system. Results showed a decrease in the resistance to charge transfer, attributed to the interaction between biological material and the electrode surface. These findings are crucial to support circuit designers in the field of neural implants.


Assuntos
Encéfalo , Animais , Suínos , Impedância Elétrica , Encéfalo/fisiologia , Microeletrodos
2.
Membranes (Basel) ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837712

RESUMO

Composite chitosan/phosphotungstic acid (CS/PTA) with the addition of TiO2 and Al2O3 particles were synthesized to be used as proton exchange membranes in direct methanol fuel cells (DMFCs). The influence of fillers was assessed through X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, liquid uptake, ion exchange capacity and methanol permeability measurements. The addition of TiO2 particles into proton exchange membranes led to an increase in crystallinity and a decrease in liquid uptake and methanol permeability with respect to pristine CS/PTA membranes, whilst the effect of the introduction of Al2O3 particles on the characteristics of membranes is almost the opposite. Membranes were successfully tested as proton conductors in a single module DMFC of 1 cm2 as active area, operating at 50 °C fed with 2 M methanol aqueous solution at the anode and oxygen at the cathode. Highest performance was reached by using a membrane with TiO2 (5 wt.%) particles, i.e., a power density of 40 mW cm-2, almost doubling the performance reached by using pristine CS/PTA membrane (i.e., 24 mW cm-2).

3.
J Imaging ; 8(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36286354

RESUMO

In this work, two historical flutes of the late eighteenth century were analysed by means of X-ray computed tomography (CT). The first one is a piccolo flute whose manufacturer is unknown, though some features could suggest an English or American origin. The second musical instrument is a baroque transverse flute, probably produced by Lorenzo Cerino, an Italian instrument maker active in Turin (Italy) in the late eighteenth century. Analyses carried out provided information on manufacturing techniques, materials and conservation state, and are suitable to plan restoration intervention. In particular, through the CT images, it was possible to observe the presence of defects, cracks, fractures and previous restorations, as well as indications of the tools used in the making of the instruments. Particular attention was directed towards extracting metrological information about the objects. In fact, this work is the first step of a study with a final aim of determining an operative protocol to enable the making of precise-sounding copies of ancient instruments starting from CT images, that can be used to plan a virtual restoration, consisting in the creation of digitally restored copies with a 3D printer.

4.
J Imaging ; 7(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34821860

RESUMO

Diagnostic physical methods are increasingly applied to Cultural Heritage both for scientific investigations and conservation purposes. In particular, the X-ray imaging techniques of computed tomography (CT) and digital radiography (DR) are non-destructive investigation methods to study an object, being able to give information on its inner structure. In this paper, we present the results of the X-ray imaging study on an ancient Egyptian statuette (Late Period 722-30 BCE) belonging to the collection of Museo Egizio in Torino and representing an Egyptian goddess called Taweret, carved on wood and gilded with some colored details. Since few specific studies have been focused on materials and techniques used in Ancient Egypt for gilding, a detailed investigation was started in order to verify the technical features of the decoration in this sculpture. Specifically, DR and CT analyses have been performed at the Centro Conservazione e Restauro "La Venaria Reale" (CCR), with a new high resolution flat-panel detector, that allowed us to perform tomographic analysis reaching a final resolution better than the one achievable with the previous apparatus operating in the CCR.

5.
Membranes (Basel) ; 11(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34357186

RESUMO

Manipulation of ions and molecules by external control at the nanoscale is highly relevant to biomedical applications. We report a biocompatible electrode-embedded nanofluidic channel membrane designed for electrofluidic applications such as ionic field-effect transistors for implantable drug-delivery systems. Our nanofluidic membrane includes a polysilicon electrode electrically isolated by amorphous silicon carbide (a-SiC). The nanochannel gating performance was experimentally investigated based on the current-voltage (I-V) characteristics, leakage current, and power consumption in potassium chloride (KCl) electrolyte. We observed significant modulation of ionic diffusive transport of both positively and negatively charged ions under physical confinement of nanochannels, with low power consumption. To study the physical mechanism associated with the gating performance, we performed electrochemical impedance spectroscopy. The results showed that the flat band voltage and density of states were significantly low. In light of its remarkable performance in terms of ionic modulation and low power consumption, this new biocompatible nanofluidic membrane could lead to a new class of silicon implantable nanofluidic systems for tunable drug delivery and personalized medicine.

6.
Sensors (Basel) ; 22(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009722

RESUMO

Sensing coils are inductive sensors commonly used to measure magnetic fields, such as those generated by electromagnets used in many kinds of industrial and scientific applications. Inductive sensors rely on integrating the output voltage at the coil's terminals in order to obtain flux linkage, which may suffer from the magnification of low-frequency noise resulting in a drifting integrated signal. This article presents a method for the cancellation of integrator drift. The method is based on a first-order linear Kalman filter combining the data from the coil and a second sensor. Two case studies are presented. In the first one, the second sensor is a Hall probe, which senses the magnetic field directly. In a second case study, the magnet's excitation current was used instead to provide a first-order approximation of the field. Experimental tests show that both approaches can reduce the measured field drift by three orders of magnitude. The Hall probe option guarantees, in addition, one order of magnitude better absolute accuracy than by using the excitation current.

7.
Micromachines (Basel) ; 10(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505860

RESUMO

The development of solid state gas sensors based on microtransducers and nanostructured sensing materials is the key point in the design of new portable measurement systems with sensing and identification performances comparable with those of most sophisticated analytical techniques. In such a context, a lot of effort must be spent of course in the development of the sensing material, but also in the choice of the transducer mechanism and structure, in the electrical characterization of the sensor prototypes, as well as in the design of suitable measurement setups. [...].

8.
Chemosphere ; 217: 26-34, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30396047

RESUMO

This study deals with the electrochemical degradation of Amaranth in aqueous solution by means of stainless steel (SS) electrodes coated with a SiOx interlayer deposited by Plasma Enhanced Chemical Vapour Deposition and a modified PbO2 top layer deposited by continuous galvanostatic electrodeposition. The morphological characterization of the PbO2 top-layer performed by Field Emission Scanning Electron Microscope put in evidence that the SiOx, interlayer allows obtaining a more integrated PbO2/SS electrode with a very homogeneous PbO2 film. The composition of the lead oxide layer was investigated by X-ray Diffractometry, showing that the ß-PbO2/α-PbO2 ratio in the top layer deposited on the SiOx film was four times higher respect to the one deposited directly on the stainless steel surface. In addition, the electrochemical behaviour of SS/SiOx/PbO2 interfaces was studied by electrochemical impedance spectroscopy (EIS). The EIS results showed that the presence of SiOx favors electron transfer within the oxide layer which improves electro-oxidation capability. Moreover, bulk electrolysis showed that over 100% colour removal and 84% COD removal, using SS/SiOx/PbO2 at acidic pH were reached after 300 min. High Performance Liquid Chromatography analysis was used for the quantitative determinations of initial Amaranth dye molecule removal and to evaluate its specific degradation rate. In order to evaluate the phototoxicity of treated solution with different by-products, different tests of germination were performed and proved that the electrochemical treatment with modified PbO2 could be as an efficient technology for reducing hazardous wastewater toxicity and able to produce water available for reuse.


Assuntos
Corante Amaranto/química , Eletroquímica/métodos , Eletrodos , Eletrólise , Chumbo , Oxirredução , Óxidos , Dióxido de Silício/síntese química , Poluentes Químicos da Água/química , Purificação da Água/métodos
9.
Sensors (Basel) ; 15(1): 485-98, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25558990

RESUMO

This paper describes an approach to develop and deploy low-cost plastic optical fiber sensors suitable for measuring low concentrations of pollutants in the atmosphere. The sensors are designed by depositing onto the exposed core of a plastic fiber thin films of sensitive compounds via either plasma sputtering or via plasma-enhanced chemical vapor deposition (PECVD). The interaction between the deposited layer and the gas alters the fiber's capability to transmit the light, so that the sensor can simply be realized with a few centimeters of fiber, an LED and a photodiode. Sensors arranged in this way exhibit several advantages in comparison to electrochemical and optical conventional sensors; in particular, they have an extremely low cost and can be easily designed to have an integral, i.e., cumulative, response. The paper describes the sensor design, the preparation procedure and two examples of sensor prototypes that exploit a cumulative response. One sensor is designed for monitoring indoor atmospheres for cultural heritage applications and the other for detecting the presence of particular gas species inside the RPC (resistive plate chamber) muon detector of the Compact Muon Solenoid (CMS) experiment at CERN in Geneva.


Assuntos
Custos e Análise de Custo , Tecnologia de Fibra Óptica/economia , Tecnologia de Fibra Óptica/instrumentação , Gases/análise , Fibras Ópticas/economia , Acetatos/química , Desenho de Equipamento , Ácido Fluorídrico/análise , Sulfeto de Hidrogênio/análise , Óptica e Fotônica , Gases em Plasma/química , Plásticos , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...