Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362366

RESUMO

Double-stranded RNA-binding proteins (dsRBPs) are major players in the regulation of gene expression patterns. Among them, Nuclear Factor 90 (NF90) has a plethora of well-known functions in viral infection, transcription, and translation as well as RNA stability and degradation. In addition, NF90 has been identified as a regulator of microRNA (miRNA) maturation by competing with Microprocessor for the binding of pri-miRNAs in the nucleus. NF90 was recently shown to control the biogenesis of a subset of human miRNAs, which ultimately influences, not only the abundance, but also the expression of the host gene and the fate of the mRNA target repertoire. Moreover, recent evidence suggests that NF90 is also involved in RNA-Induced Silencing Complex (RISC)-mediated silencing by binding to target mRNAs and controlling their translation and degradation. Here, we review the many, and growing, functions of NF90 in RNA biology, with a focus on the miRNA pathway and RISC-mediated gene silencing.


Assuntos
MicroRNAs , Proteínas do Fator Nuclear 90 , Humanos , Proteínas do Fator Nuclear 90/genética , Proteínas do Fator Nuclear 90/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Biologia
2.
BMC Biol ; 20(1): 194, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050755

RESUMO

BACKGROUND: Nuclear factor 90 (NF90) is a double-stranded RNA-binding protein involved in a multitude of different cellular mechanisms such as transcription, translation, viral infection, and mRNA stability. Recent data suggest that NF90 might influence the abundance of target mRNAs in the cytoplasm through miRNA- and Argonaute 2 (Ago2)-dependent activity. RESULTS: Here, we identified the interactome of NF90 in the cytoplasm, which revealed several components of the RNA-induced silencing complex (RISC) and associated factors. Co-immunoprecipitation analysis confirmed the interaction of NF90 with the RISC-associated RNA helicase, Moloney leukemia virus 10 (MOV10), and other proteins involved in RISC-mediated silencing, including Ago2. Furthermore, NF90 association with MOV10 and Ago2 was found to be RNA-dependent. Glycerol gradient sedimentation of NF90 immune complexes indicates that these proteins occur in the same protein complex. At target RNAs predicted to bind both NF90 and MOV10 in their 3' UTRs, NF90 association was increased upon loss of MOV10 and vice versa. Interestingly, loss of NF90 led to an increase in association of Ago2 as well as a decrease in the abundance of the target mRNA. Similarly, during hypoxia, the binding of Ago2 to vascular endothelial growth factor (VEGF) mRNA increased after loss of NF90, while the level of VEGF mRNA decreased. CONCLUSIONS: These findings reveal that, in the cytoplasm, NF90 can associate with components of RISC such as Ago2 and MOV10. In addition, the data indicate that NF90 and MOV10 may compete for the binding of common target mRNAs, suggesting a role for NF90 in the regulation of RISC-mediated silencing by stabilizing target mRNAs, such as VEGF, during cancer-induced hypoxia.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA , Regiões 3' não Traduzidas , Proteínas Argonautas/genética , Humanos , Hipóxia/genética , MicroRNAs/metabolismo , Proteínas do Fator Nuclear 90/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
RNA Biol ; 18(12): 2556-2575, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34190025

RESUMO

RNA variants that emerge from editing and alternative splicing form important regulatory stages in protein signalling. In this report, we apply an integrated DNA and RNA variant detection workbench to define the range of RNA variants that deviate from the reference genome in a human melanoma cell model. The RNA variants can be grouped into (i) classic ADAR-like or APOBEC-like RNA editing events and (ii) multiple-nucleotide variants (MNVs) including three and six base pair in-frame non-canonical unmapped exons. We focus on validating representative genes of these classes. First, clustered non-synonymous RNA edits (A-I) in the CDK13 gene were validated by Sanger sequencing to confirm the integrity of the RNA variant detection workbench. Second, a highly conserved RNA variant in the MAP4K5 gene was detected that results most likely from the splicing of a non-canonical three-base exon. The two RNA variants produced from the MAP4K5 locus deviate from the genomic reference sequence and produce V569E or V569del isoform variants. Low doses of splicing inhibitors demonstrated that the MAP4K5-V569E variant emerges from an SF3B1-dependent splicing event. Mass spectrometry of the recombinant SBP-tagged MAP4K5V569E and MAP4K5V569del proteins pull-downs in transfected cell systems was used to identify the protein-protein interactions of these two MAP4K5 isoforms and propose possible functions. Together these data highlight the utility of this integrated DNA and RNA variant detection platform to detect RNA variants in cancer cells and support future analysis of RNA variant detection in cancer tissue.


Assuntos
Processamento Alternativo , DNA/genética , Éxons , Proteínas Serina-Treonina Quinases/genética , RNA/genética , Humanos , Isoenzimas , Edição de RNA
4.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020942

RESUMO

MRN-MDC1 plays a central role in the DNA damage response (DDR) and repair. Using proteomics of isolated chromatin fragments, we identified DDR factors, such as MDC1, among those highly associating with a genomic locus upon transcriptional activation. Purification of MDC1 in the absence of exogenous DNA damage revealed interactions with factors involved in gene expression and RNA processing, in addition to DDR factors. ChIP-seq showed that MRN subunits, MRE11 and NBS1, colocalized throughout the genome, notably at TSSs and bodies of actively transcribing genes, which was dependent on the RNAPII transcriptional complex rather than transcription per se. Depletion of MRN increased RNAPII abundance at MRE11/NBS1-bound genes. Prolonged MRE11 or NBS1 depletion induced single-nucleotide polymorphisms across actively transcribing MRN target genes. These data suggest that association of MRN with the transcriptional machinery constitutively scans active genes for transcription-induced DNA damage to preserve the integrity of the coding genome.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
5.
Biochim Biophys Acta Gen Subj ; 1864(12): 129722, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866596

RESUMO

BACKGROUND: The identification of mutated proteins in human cancer cells-termed proteogenomics, requires several technologically independent research methodologies including DNA variant identification, RNA sequencing, and mass spectrometry. Any one of these methodologies are not optimized for identifying potential mutated proteins and any one output fails to cover completely a specific landscape. METHODS: An isogenic melanoma cell with a p53-null genotype was created by CRISPR/CAS9 system to determine how p53 gene inactivation affects mutant proteome expression. A mutant peptide reference database was developed by comparing two distinct DNA and RNA variant detection platforms using these isogenic cells. Chemically fractionated tryptic peptides from lysates were processed using a TripleTOF 5600+ mass spectrometer and their spectra were identified against this mutant reference database. RESULTS: Approximately 190 mutated peptides were enriched in wt-p53 cells, 187 mutant peptides were enriched in p53-null cells, with an overlap of 147 mutated peptides. STRING analysis highlighted that the wt-p53 cell line was enriched for mutant protein pathways such as CDC5L and POLR1B, whilst the p53-null cell line was enriched for mutated proteins comprising EGF/YES, Ubiquitination, and RPL26/5 nodes. CONCLUSION: Our study produces a well annotated p53-dependent and p53-independent mutant proteome of a common melanoma cell line model. Coupled to the application of an integrated DNA and RNA variant detection platform (CLCbio) and software for identification of proteins (ProteinPilot), this pipeline can be used to detect high confident mutant proteins in cells. GENERAL SIGNIFICANCE: This pipeline forms a blueprint for identifying mutated proteins in diseased cell systems.


Assuntos
Inativação Gênica , Melanoma/genética , Proteoma/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Proteogenômica
6.
Chemistry ; 26(70): 16690-16705, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627921

RESUMO

Metal dysregulation, oxidative stress, protein modification, and aggregation are factors strictly interrelated and associated with neurodegenerative pathologies. As such, all of these aspects represent valid targets to counteract neurodegeneration and, therefore, the development of metal-binding compounds with other properties to combat multifactorial disorders is definitely on the rise. Herein, the synthesis and in-depth analysis of the first hybrids of carnosine and 8-hydroxyquinoline, carnoquinolines (CarHQs), which combine the properties of the dipeptide with those of 8-hydroxyquinoline, are reported. CarHQs and their copper complexes were characterized through several techniques, such as ESI-MS and NMR, UV/Vis, and circular dichroism spectroscopy. CarHQs can modulate self- and copper-induced amyloid-ß aggregation. These hybrids combine the antioxidant activity of their parent compounds. Therefore, they can simultaneously scavenge free radicals and reactive carbonyl species, thanks to the phenolic group and imidazole ring. These results indicate that CarHQs are promising multifunctional candidates for neurodegenerative disorders and they are worthy of further studies.


Assuntos
Peptídeos beta-Amiloides/química , Carnosina/química , Carnosina/farmacologia , Cobre/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Carnosina/síntese química , Cobre/química , Ligação Proteica/efeitos dos fármacos
7.
J Environ Sci (China) ; 94: 100-110, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563473

RESUMO

In recent years, the contamination of water by arsenic reached alarming levels in many countries of the world, attracting the interest of many researchers engaged in testing methodologies able to remove this harmful pollutant. An important aspect that must be taken into consideration is the possibility to find arsenic in different chemical forms which could require different approaches for its removal. At this aim, a speciation analysis appears to be crucial for better understanding the behavior of arsenic species in aqueous solutions, especially in presence of compounds with marked chelating properties. Phosphonates can be identified as good sequestering agents and, at this purpose, this manuscript intends to investigate the interaction of As(III) with three phosphonic acids derived from nitrilotriacetic acid (NTA) by replacements of one (N-(Phosphonomethyl) iminodiacetic acid, NTAP), two (N,N-Bis-(phosphonomethyl) glycine, NTA2P) and three (Nitrilotri(methylphosphonic acid), NTA3P) carboxylic groups with the same number of phosphonate groups. An in-depth potentiometric and calorimetric investigation allowed to determine speciation models featured by simple ML, MLHi and ML(OH) species. A complete thermodynamic characterization of the systems is reported together with the definition of coordination mode by mass spectrometry measurements. On the light of the speciation models, the possibility of using these ligands in arsenic removal techniques was assessed by determining the pL0.5 (the concentration of ligand able to remove the 50% of metal ion present in trace). All ligands show a good sequestering ability, in particular under the conditions of fresh water, following the trend NTA3P > NTA2P > NTAP.


Assuntos
Organofosfonatos , Água , Quelantes , Ligantes , Termodinâmica
8.
Nucleic Acids Res ; 48(12): 6874-6888, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32427329

RESUMO

MicroRNAs (miRNAs) are predicted to regulate the expression of >60% of mammalian genes and play fundamental roles in most biological processes. Deregulation of miRNA expression is a hallmark of most cancers and further investigation of mechanisms controlling miRNA biogenesis is needed. The double stranded RNA-binding protein, NF90 has been shown to act as a competitor of Microprocessor for a limited number of primary miRNAs (pri-miRNAs). Here, we show that NF90 has a more widespread effect on pri-miRNA biogenesis than previously thought. Genome-wide approaches revealed that NF90 is associated with the stem region of 38 pri-miRNAs, in a manner that is largely exclusive of Microprocessor. Following loss of NF90, 22 NF90-bound pri-miRNAs showed increased abundance of mature miRNA products. NF90-targeted pri-miRNAs are highly stable, having a lower free energy and fewer mismatches compared to all pri-miRNAs. Mutations leading to less stable structures reduced NF90 binding while increasing pri-miRNA stability led to acquisition of NF90 association, as determined by RNA electrophoretic mobility shift assay (EMSA). NF90-bound and downregulated pri-miRNAs are embedded in introns of host genes and expression of several host genes is concomitantly reduced. These data suggest that NF90 controls the processing of a subset of highly stable, intronic miRNAs.


Assuntos
Sequências Repetidas Invertidas/genética , MicroRNAs/genética , Neoplasias/genética , Proteínas do Fator Nuclear 90/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , MicroRNAs/biossíntese , Proteínas do Fator Nuclear 90/antagonistas & inibidores , Processamento Pós-Transcricional do RNA/genética
9.
Metallomics ; 11(9): 1567-1578, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31482903

RESUMO

In this work we report on the synthesis and physiochemical/biological characterization of a peptide encompassing the first thirteen residues of neurotrophin-3 (NT-3). The protein capability to promote neurite outgrowth and axonal branching by a downstream mechanism that involves the increase of the cAMP response element-binding level (CREB) was found for the NT3(1-13) peptide, thus validating its protein mimetic behaviour. Since copper ions are also involved in neurotransmission and their internalization may be an essential step in neuron differentiation and CREB phosphorylation, the peptide and its copper complexes were characterized by potentiometric and spectroscopic techniques, including UV-visible, CD and EPR. To have a detailed picture of the coordination features of the copper complexes with NT3(1-13), we also scrutinized the two peptide fragments encompassing the shorter sequences 1-5 and 5-13, respectively, showing that the amino group is the main anchoring site for Cu(ii) at physiological pH. The peptide activity increased in the presence of copper ions. The effect of copper(ii) addition is more marked for NT3(1-13) than the other two peptide fragments, in agreement with its higher affinity for metal ions. Confocal microscopy measurements carried out on fluorescently labelled NT3(1-13) indicated that copper ions increase peptide internalization.


Assuntos
Complexos de Coordenação/farmacologia , Cobre/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Neurotrofina 3/farmacologia , Peptídeos/farmacologia , Linhagem Celular , Complexos de Coordenação/química , Cobre/química , Humanos , Neurotrofina 3/química , Peptídeos/química , Fosforilação/efeitos dos fármacos
10.
Eur J Med Chem ; 135: 447-457, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28475972

RESUMO

Increasing evidence is accumulating, showing that neurodegenerative disorders are somehow associated with the toxicity of amyloid aggregates, metal ion dyshomeostasis as well as with products generated by oxidative stress. Within the biological oxidation products, acrolein does have a prominent role. A promising strategy to deal with the above neurogenerative disorders is to use multi-functions bio-molecules. Herein, we show how a class of bio-conjugates takes advantage of the antiaggregating, antioxidant and antiglycating properties of trehalose and carnosine. Their ability to sequester acrolein and to inhibit both self- and metal-induced aggregation is here reported. The copper(II) coordination properties of a new trehalose-carnosine conjugate and the relative antioxidant effects have also been investigated.


Assuntos
Acroleína/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Antioxidantes/farmacologia , Carnosina/farmacologia , Cobre/farmacologia , Compostos Organometálicos/farmacologia , Trealose/farmacologia , Acroleína/toxicidade , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/síntese química , Antioxidantes/química , Carnosina/química , Cobre/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Trealose/química
11.
Inorg Chem ; 54(6): 2591-602, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25732904

RESUMO

Oxidative stress and protein aggregation have been demonstrated to be the major factors involved in neurodegenerative diseases. Metal ions play a pivotal role, acting as mediators of neurotoxicity either by favoring or redox cycling. Thus, they represent a promising and suitable therapeutic target for the treatment of neurodegenerative disorders. In particular, the development of bifunctional or multifunctional molecules, which have antiaggregant and metal-chelating/antioxidant properties, may be considered as a valuable strategy for the treatment of neurodegeneration considering its multifactorial nature. Herein, we report the design and the characterization of four new multifunctional sugar-appended 8-hydroxyquinolines focusing on the effects of the conjugation with trehalose, a nonreducing disaccharide involved in the protection of proteins and cells against environmental stresses. These glycoconjugates do not exhibit any antiproliferative activity against three human cell lines of different histological origin, unlike 8-hydroxyquinolines. The multiple properties of the new derivatives are highlighted, reporting their Cu(2+) and Zn(2+) binding ability, and antioxidant and antiaggregant capacities. In particular, these latter were determined by different assays, including the evaluation of their ability to modulate or even suppress the aggregation of Aß1-40 and Aß1-42 peptides induced by copper or zinc ions.


Assuntos
Peptídeos beta-Amiloides/química , Glucose/química , Metais/farmacologia , Fragmentos de Peptídeos/química , Multimerização Proteica/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobre/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Solubilidade , Zinco/farmacologia
12.
J Inorg Biochem ; 131: 56-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24246303

RESUMO

Homocarnosine is an endogenous dipeptide distributed in cerebral regions and cerebrospinal fluid. Homocarnosine may serve as an antioxidant, free radical scavenger, neurotransmitter, buffering system and metal chelating agent, especially for copper(II) and zinc(II). The homeostasis of homocarnosine is regulated by carnosinases; the serum-circulating isoform of these metallodipeptidases partially hydrolyses homocarnosine in the blood. The enzyme activity is also inhibited by homocarnosine itself in a dose-dependent manner. We synthesized a new multifunctional homocarnosine derivative with trehalose, a disaccharide that possesses several beneficial properties, among which the inhibition of protein aggregation (i.e. Aß amyloid and polyglutamine proteins) involved in widespread neurodegenerative disorders. We studied the copper(II) binding features of the new conjugate by means of potentiometric and spectroscopic techniques (UV-visible and circular dichroism) and the superoxide dismutase-like activity of the copper(II) complexes with homocarnosine and its trehalose conjugate was evaluated. The inhibitory effect of the new homocarnosine derivative on the carnosinase activity and its effects on Aß aggregation were also investigated.


Assuntos
Carnosina/análogos & derivados , Quelantes/química , Quelantes/farmacologia , Cobre/metabolismo , Glicoconjugados/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Carnosina/química , Quelantes/síntese química , Dicroísmo Circular , Complexos de Coordenação/química , Cobre/química , Estabilidade de Medicamentos , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Espectrofotometria Ultravioleta , Superóxido Dismutase/metabolismo , Trealose/química
13.
Chemistry ; 17(41): 11596-603, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21953931

RESUMO

Intraneuronal inclusions consisting of hypermetallated, (poly-)ubiquitinated proteins are a hallmark of neurodegeneration. To highlight the possible role played by metal ions in the dysfunction of the ubiquitin-proteasome system, here we report on zinc(II)/ubiquitin binding in terms of affinity constants, speciation, preferential binding sites and effects on protein stability and self-assembly. Potentiometric titrations allowed us to establish that at neutral pH only two species, ZnUb and Zn(2)Ub, are present in solution, in line with ESI-MS data. A change in the diffusion coefficient of ubiquitin was observed by NMR DOSY experiments after addition of Zn(II) ions, and thus indicates metal-promoted formation of protein assemblies. Analysis of (1)H, (15)N, (13)Cα and (13)CO chemical-shift perturbation after equimolar addition of Zn(II) ions to ubiquitin outlined two different metal-binding modes. The first involves a dynamic equilibrium in which zinc(II) is shared between a region including Met1, Gln2, Ile3, Phe4, Thr12, Leu15, Glu16, Val17, Glu18, Ile61 and Gln62 residues, which represent a site already described for copper binding, and a domain comprising Ile23, Glu24, Lys27, Ala28, Gln49, Glu51, Asp52, Arg54 and Thr55 residues. A second looser binding mode is centred on His68. Differential scanning calorimetry evidenced that addition of increasing amounts of Zn(II) ions does not affect protein thermal stability; rather it influences the shape of thermograms because of the increased propensity of ubiquitin to self-associate. The results presented here indicate that Zn(II) ions may interact with specific regions of ubiquitin and promote protein-protein contacts.


Assuntos
Metaloproteínas/química , Metais/química , Ubiquitina/química , Zinco/química , Sítios de Ligação , Cobre/química , Espectroscopia de Ressonância Magnética , Metaloproteínas/metabolismo , Ligação Proteica , Ubiquitina/metabolismo
14.
Chemistry ; 17(34): 9448-55, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21732434

RESUMO

The interactions of metal ions with chiral molecules are of particular interest for relevant biochemical processes, as many of them are made possible only with a selected chirality of the stereocenters. In this work we report a study of the stereoselectivity of copper(II) complexes with D-trehalose-L-carnosine and D-trehalose-D-carnosine as a prototypical case of natural chirality selection. The interest in L-carnosine dipeptide is compounded by its antioxidant and antitumor properties, which are further enhanced when combined with D-trehalose. Potentiometric, calorimetric, and UV/circular dichroism (CD) spectroscopic measurements show that the copper(II) dimer of D-trehalose-L-carnosine is more stable than the D-trehalose-D-carnosine diastereoisomeric copper(II) dimer (log ß(L)(22-2) - log ß(D)(22-2) = 3.6). Free-energy calculations highlight that the cause of this different behavior lies with different intramolecular weak interactions between the diastereoisomers. The different pattern of hydrogen bonds and the different CH-π interactions between the π-electron-rich imidazole and the α-glucose rings are more favorable by 5 kcal mol(-1) in the L dimer.


Assuntos
Carnosina/química , Glicoconjugados/química , Trealose/química , Carnosina/metabolismo , Química Orgânica , Cobre/química , Cobre/metabolismo , Dipeptídeos/química , Glicoconjugados/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Imidazóis/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Prótons , Estereoisomerismo , Termodinâmica , Trealose/metabolismo
15.
Inorg Chem ; 50(11): 4917-24, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21513326

RESUMO

L-Carnosine (ß-alanyl-L-histidine, LCar) is the most widely and abundantly distributed copper(II)-coordinating endogenous dipeptide. Though its physiological role has not been completely understood yet, many functions have been proposed for this compound. LCar might be crucial in the potential reduction or prevention of several pathologies in which the metal ions are thought to be involved. The potential therapeutic applications of LCar are drastically limited because of hydrolysis by specific dipeptidases (carnosinases). D-Carnosine (DCar), the enantiomer of the naturally occurring dipeptide, shows the same properties as those of LCar, but it is not hydrolyzed by carnosinases. Chemical modification of LCar has been proposed as a promising strategy to reduce its enzymatic hydrolysis; conjugation of a carbohydrate moiety may also improve site-specific transport to different tissues, which would enhance the peptide bioavailability. On this basis, we have functionalized DCar with ß-cyclodextrin (CDDCar) and characterized the compound via NMR. The copper(II) binding properties of the new DCar derivative were investigated by spectroscopic techniques (UV-vis, circular dichroism, electron paramagnetic resonance) and potentiometric measurements. The results surprisingly revealed a pronounced difference from the analogous LCar derivative (CDLCar), especially concerning the dimeric species. The spectroscopic data show that this stereoselectivity is driven by noncovalent interactions, namely, hydrogen bonds, CH-π interactions, and steric and hydrophobic effects of the cyclodextrin cavity.


Assuntos
Carnosina/química , Cobre/química , Ciclodextrinas/química , Compostos Organometálicos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...