Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 152: 99-108, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519681

RESUMO

The amphibian chytrid fungus (Bd) has caused declines and some extinctions of amphibian populations worldwide. Early and accurate Bd detection is essential for management of susceptible anurans. We analyzed the effectiveness of in situ DNA extraction with a handheld mobile quantitative PCR (qPCR) thermocycler to detect Bd on frog skin swabs and in water samples using environmental DNA (eDNA). We collected duplicate eDNA samples and skin swabs from 3 Bd-positive Rana sierrae populations. We processed one set of samples using a field protocol (a handheld thermocycler) and the other half using a standard lab protocol. We detected Bd DNA in all R. sierrae swabbed using both the field and lab protocols. We also detected Bd DNA in eDNA samples at all sites, although the field and lab protocols failed to detect Bd eDNA at separate singular sites; results from the field and lab eDNA protocol did not match. The probability of detecting Bd DNA in the technical replicates was lower for the field protocol than the lab protocol, suggesting the field protocol has lower sensitivity and may not detect low quantities of DNA. Our results suggest that the field extraction protocol using a handheld qPCR platform is a promising tool for rapid detection of Bd in susceptible amphibian populations, yielding accurate results in less than 60 min. However, the applied field protocol may be prone to false negatives when analyzing low-quantity DNA samples such as eDNA water samples or frog swabs with low pathogen loads.


Assuntos
Quitridiomicetos , Animais , Quitridiomicetos/genética , Batrachochytrium/genética , Anfíbios/microbiologia , Anuros/microbiologia , DNA , Água
2.
PLoS One ; 15(11): e0241119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156870

RESUMO

Effectively planning conservation introductions involves assessing the suitability of both donor and recipient populations, including the landscape of disease risk. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has caused extensive amphibian declines globally and may hamper reintroduction attempts. To determine Bd dynamics in potential source populations for conservation translocations of the threatened California red-legged frog (Rana draytonii) to Yosemite National Park, we conducted Bd sampling in two populations in the foothills of the Sierra Nevada Mountains, California, U.S.A. At one of two sites, we observed lethally high Bd loads in early post-metamorphic life stages and confirmed one chytridiomycosis-induced mortality, the first such report for this species. These results informed source population site selection for subsequent R. draytonii conservation translocations. Conservation efforts aimed at establishing new populations of R. draytonii in a landscape where Bd is ubiquitous can benefit from an improved understanding of risk through disease monitoring and ex situ infection studies.


Assuntos
Anuros/microbiologia , Batrachochytrium/patogenicidade , Micoses/microbiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...