Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 237(1): 217-231, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36128659

RESUMO

Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca2+ ) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H+ ) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H+ /Na+ -exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na+ ) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca2+ signaling.


Assuntos
Cálcio , Nicotiana , Cálcio/metabolismo , Nicotiana/metabolismo , Cloreto de Sódio/farmacologia , Raízes de Plantas/metabolismo , Folhas de Planta/fisiologia , Sódio/metabolismo , Íons/metabolismo
2.
Plant Physiol ; 190(1): 44-59, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604105

RESUMO

To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.


Assuntos
Planta Carnívora , Magnoliopsida , Animais , Transporte Biológico , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Polissacarídeos
3.
New Phytol ; 219(4): 1421-1432, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938800

RESUMO

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Nicotiana/enzimologia , Salinidade , Cloreto de Sódio/farmacologia , Vacúolos/enzimologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Difosfatos/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Bombas de Próton/metabolismo , Prótons , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
Nat Plants ; 1: 14001, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246048

RESUMO

Sugar beet provides around one third of the sugar consumed worldwide and serves as a significant source of bioenergy in the form of ethanol. Sucrose accounts for up to 18% of plant fresh weight in sugar beet. Most of the sucrose is concentrated in the taproot, where it accumulates in the vacuoles. Despite 30 years of intensive research, the transporter that facilitates taproot sucrose accumulation has escaped identification. Here, we combine proteomic analyses of the taproot vacuolar membrane, the tonoplast, with electrophysiological analyses to show that the transporter BvTST2.1 is responsible for vacuolar sucrose uptake in sugar beet taproots. We show that BvTST2.1 is a sucrose-specific transporter, and present evidence to suggest that it operates as a proton antiporter, coupling the import of sucrose into the vacuole to the export of protons. BvTST2.1 exhibits a high amino acid sequence similarity to members of the tonoplast monosaccharide transporter family in Arabidopsis, prompting us to rename this group of proteins 'tonoplast sugar transporters'. The identification of BvTST2.1 could help to increase sugar yields from sugar beet and other sugar-storing plants in future breeding programs.

5.
Transl Oncol ; 6(2): 169-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23544169

RESUMO

Previous studies have shown that the dual phosphatidylinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor NVP-BEZ235 radiosensitizes tumor cells if added shortly before ionizing radiation (IR) and kept in culture medium thereafter. The present study explores the impact of inhibitor and IR schedule on the radiosensitizing ability of NVP-BEZ235 in four human glioblastoma cell lines. Two different drug-IR treatment schedules were compared. In schedule I, cells were treated with NVP-BEZ235 for 24 hours before IR and the drug was removed before IR. In schedule II, the cells were exposed to NVP-BEZ235 1 hour before, during, and up to 48 hours after IR. The cellular response was analyzed by colony counts, expression of marker proteins of the PI3K/AKT/mTOR pathway, cell cycle, and DNA damage. We found that under schedule I, NVP-BEZ235 did not radiosensitize cells, which were mostly arrested in G1 phase during IR exposure. In addition, the drug-pretreated and irradiated cells exhibited less DNA damage but increased expressions of phospho-AKT and phospho-mTOR, compared to controls. In contrast, NVP-BEZ235 strongly enhanced the radiosensitivity of cells treated according to schedule II. Possible reasons of radiosensitization by NVP-BEZ235 under schedule II might be the protracted DNA repair, prolonged G2/M arrest, and, to some extent, apoptosis. In addition, the PI3K pathway was downregulated by the NVP-BEZ235 at the time of irradiation under schedule II, as contrasted with its activation in schedule I. We found that, depending on the drug-IR schedule, the NVP-BEZ235 can act either as a strong radiosensitizer or as a cytostatic agent in glioblastoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...