Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 14: 159, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26286140

RESUMO

BACKGROUND: The Sonic hedgehog (Shh) signaling pathway plays an important role in cerebellar development, and mutations leading to hyperactive Shh signaling have been associated with certain forms of medulloblastoma, a common form of pediatric brain cancer. While the fundamentals of this pathway are known, the molecular targets contributing to Shh-mediated proliferation and transformation are still poorly understood. Na,K-ATPase is a ubiquitous enzyme that maintains intracellular ion homeostasis and functions as a signaling scaffold and a cell adhesion molecule. Changes in Na,K-ATPase function and subunit expression have been reported in several cancers and loss of the ß1-subunit has been associated with a poorly differentiated phenotype in carcinoma but its role in medulloblastoma progression is not known. METHODS: Human medulloblastoma cell lines and primary cultures of cerebellar granule cell precursors (CGP) were used to determine whether Shh regulates Na,K-ATPase expression. Smo/Smo medulloblastoma were used to assess the Na,K-ATPase levels in vivo. Na,K-ATPase ß1-subunit was knocked down in DAOY cells to test its role in medulloblastoma cell proliferation and tumorigenicity. RESULTS: Na,K-ATPase ß1-subunit levels increased with differentiation in normal CGP cells. Activation of Shh signaling resulted in reduced ß1-subunit mRNA and protein levels and was mimicked by overexpression of Gli1and Bmi1, both members of the Shh signaling cascade; overexpression of Bmi1 reduced ß1-subunit promoter activity. In human medulloblastoma cells, low ß1-subunit levels were associated with increased cell proliferation and in vivo tumorigenesis. CONCLUSIONS: Na,K-ATPase ß1-subunit is a target of the Shh signaling pathway and loss of ß1-subunit expression may contribute to tumor development and progression not only in carcinoma but also in medulloblastoma, a tumor of neuronal origin.


Assuntos
Carcinogênese/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , ATPase Trocadora de Sódio-Potássio/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Meduloblastoma/patologia , Proteína Quinase 7 Ativada por Mitógeno/biossíntese , RNA Mensageiro/biossíntese , Transdução de Sinais/genética , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Transcrição/biossíntese , Proteína GLI1 em Dedos de Zinco
2.
PLoS One ; 8(8): e71455, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951168

RESUMO

Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP) cells. Sonic hedgehog (Shh) is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs) and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL) in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Cerebelares/genética , Cerebelo/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Histona Desacetilase 2/genética , Meduloblastoma/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Cerebelares/enzimologia , Neoplasias Cerebelares/patologia , Cerebelo/enzimologia , Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Histona Desacetilase 2/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Meduloblastoma/enzimologia , Meduloblastoma/patologia , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Transdução de Sinais
3.
Am J Physiol Renal Physiol ; 290(4): F892-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16234309

RESUMO

The mechanism of solute accumulation in the renal inner medulla remains an unresolved issue. Experiments were carried out in hamsters to address the possibility that the peristaltic contractions of the renal pelvic wall surrounding the inner medulla play a role in the inner medullary concentrating process. The right renal pelvis was subjected to one of four manipulations (surgical removal of the pelvic wall, paralysis of the pelvic wall with xylocaine, inhibition of pelvic contractions by direct application of heat, or sham treatment) followed by analysis of the inner medullary solute concentrations in the right kidney vs. the untouched left kidney. Removal of the pelvic wall resulted in a marked reduction in inner medullary osmolality, confirming prior observations. Paralysis of the pelvic wall with xylocaine produced a similar decrease in inner medullary osmolality, despite the fact that urine flow was maintained. In contrast, sham treatment (surgical exposure of the right renal pelvic wall without any further manipulation) did not decrease inner medullary osmolality. To test whether the decrease in urinary osmolality following xylocaine treatment could have been due to a side effect of the drug, pelvic peristaltic contractions were eliminated in another way, by direct application of heat to denature the smooth muscle of the pelvic wall. This procedure also significantly decreased inner medullary osmolality. We conclude that elimination of the contractions of the renal pelvic wall in the hamster significantly impairs inner medullary concentrating ability.


Assuntos
Medula Renal/fisiologia , Ureia/química , Equilíbrio Hidroeletrolítico/fisiologia , Anestésicos Locais/farmacologia , Animais , Cricetinae , Lateralidade Funcional , Lidocaína/farmacologia , Masculino , Mesocricetus , Concentração Osmolar , Pelve , Peristaltismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...